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ABSTRACT

The motivation behind the cognitive radio networks (CRNs) is rooted in scarcity of the

radio spectrum and ine�ciency of its management to meet the ever increasing high quality

of service demands. Furthermore, information and communication technologies have limited

and/or expensive energy resources and contribute significantly to the global carbon footprint.

To alleviate these issues, energy e�cient and energy harvesting (EEH) CRNs can harvest the

required energy from ambient renewable sources while collecting the necessary bandwidth by

discovering free spectrum for a minimized energy cost. Therefore, EEH-CRNs have potential

to achieve green communications by enabling spectrum and energy self-sustaining networks.

In this thesis, green cooperative spectrum sensing (CSS) policies are considered for large scale

heterogeneous CRNs which consist of multiple primary channels (PCs) and a large number of

secondary users (SUs) with heterogeneous sensing and reporting channel qualities.

Firstly, a multi-objective clustering optimization (MOCO) problem is formulated from

macro and micro perspectives; Macro perspective partitions SUs into clusters with the ob-

jectives: 1) Intra-cluster energy minimization of each cluster, 2) Intra-cluster throughput max-

imization of each cluster, and 3) Inter-cluster energy and throughput fairness. A multi-objective

genetic algorithm, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), is adopted and

demonstrated how to solve the MOCO. The micro perspective, on the other hand, works as a

sub-procedure on cluster formations given by macro perspective. For the micro perspective, a

multihop reporting based CH selection procedure is proposed to find: 1) The best CH which

gives the minimum total multi-hop error rate, and 2) the optimal routing paths from SUs to the

CHs using Dijkstra’s algorithm. Using Poisson-Binomial distribution, a novel and generalized

K-out-of-N voting rule is developed for heterogeneous CRNs to allow SUs to have di↵erent

levels of local detection performance. Then, a convex optimization framework is established to

minimize the intra-cluster energy cost subject to collision and spectrum utilization constraints.
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Likewise, instead of a common fixed sample size test, a weighted sample size test is considered

for quantized soft decision fusion to obtain a more EE regime under heterogeneity.

Secondly, an energy and spectrum e�cient CSS scheduling (CSSS) problem is investigated

to minimize the energy cost per achieved data rate subject to collision and spectrum utilization

constraints. The total energy cost is calculated as the sum of energy expenditures resulting

from sensing, reporting and channel switching operations. Then, a mixed integer non-linear

programming problem is formulated to determine: 1) The optimal scheduling subset of a large

number of PCs which cannot be sensed at the same time, 2) The SU assignment set for each

scheduled PC, and 3) Optimal sensing parameters of SUs on each PC. Thereafter, an equivalent

convex framework is developed for specific instances of above combinatorial problem. For the

comparison, optimal detection and sensing thresholds are also derived analytically under the

homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order

channels under the spectrum, energy and spectrum-energy limited regimes. After that, a

scheduling and assignment heuristic is proposed and shown to have a very close performance

to the exhaustive optimal solution. Finally, the behavior of the CRN is numerically analyzed

under these regimes with respect to di↵erent numbers of SUs, PCs and sensing qualities.

Lastly, a single channel energy harvesting CSS scheme is considered with SUs experiencing

di↵erent energy arrival rates, sensing, and reporting qualities. In order to alleviate the half-

duplex EH constraint, which precludes from charging and discharging at the same time, and

to harvest energy from both renewable sources and ambient radio signals, a full-duplex hybrid

energy harvesting (EH) model is developed. After formulating the energy state evolution of

half and full duplex systems under stochastic energy arrivals, a convex optimization framework

is established to jointly obtain the optimal harvesting ratio, sensing duration and detection

threshold of each SU to find an optimal myopic EH policy subject to collision and energy-

causality constraints.
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CHAPTER 1. INTRODUCTION

1.1 Cognitive Radio Networks: Motivation

The motivation behind the cognitive radio technology is rooted in the deficiency of the

current rigid spectrum management approaches to meet the ever increasing high quality of

service (QoS) requirements of today’s wireless communication systems. Prospective demands

of next-generation wireless networks are ambitious and compel the telecommunications systems

to support 1000 times heavier data tra�c, 100 times less energy consumption per transmitted

bit, and 10 times lower round-trip latency [1]. While this data deluge is a natural outcome

of the increasing number of mobile devices with data hungry applications and the Internet of

Things (IoT), low latency demand is required by the future interactive applications such as

”tactile internet”, virtual and enhanced reality, and online internet gaming, etc. Bearing in

mind that the mobile devices are battery limited and thirty percent of their energy sources are

expended by wireless networking modules [2], energy e�ciency lend itself to being an inevitable

design consideration.

Accordingly, wireless researchers in both academic and industrial communities focus on

boosting the achievable data rate per unit of time and per unit of spectrum, and substantially

shrinking the induced energy cost at the same time. Nonetheless, such a goal inherently requires

revolutionary spectrum and energy e�cient solutions, the performance of which are fundamen-

tally limited by accessible radio spectrum and energy resources. Furthermore, it has been shown

that two to three percent of the global carbon footprint are generated by the information and

communications technologies (ICT) and is expected to grow in the near future [3]. Hence,

energy harvesting communication has come into prominence to provide the mankind with a

green ICT by harnessing the energy from ambient resources (e.g., solar, wind, thermoelectric,
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electromagnetic, RF signals, etc.), and thereby establish the basis of energy self-sustained and

energy self-maintained communication networks. As a an enabler of spectrum and energy self-

sustaining communications, energy e�cient (EE) and energy harvesting (EH) cognitive radio

networks (CRNs) will be introduced in an order which exhibits both the relevance and the

complexity of the objectives: Spectrum e�ciency, energy e�ciency, and energy harvesting.

1.1.1 Spectrum E�ciency

The radio spectrum is a limited natural resource and its accessibility is directly regulated

and licensed by the governmental institutions such as the Federal Communications Commission

(FCC) in the United States. With the conventional spectrum allocation policies, radio spectrum

is exclusively allocated to operators for long time periods and each operator is restricted to

communicate within its licensed bands. However, the studies and measurements conducted

by the Spectrum-Policy Task Force of the FCC have revealed the fact that e�ciency of the

spectrum access policies is a more significant problem than the spectrum scarcity since the

spatio-temporal spectrum utilization of the licensed bands ranges from 15% to 85% [4]. The

limited availability and under-utilization of the radio frequency (RF) spectrum has therefore led

the FCC to propose the opening of licensed bands to the public. Unlike current static spectrum

access policies, this necessitates a dynamic spectrum access (DSA) strategy where unlicensed

users, a.k.a secondary users (SUs), utilize the incumbent licensees’ spectrum insomuch that

they do not cause performance degradation for the licensed users, a.k.a primary users (PUs)

[5]. Thus, primary and secondary networks refer to the networks comprised of the set of

transceiving PUs and SUs, respectively. Based on the hierarchical relationship between the

primary and secondary networks, there are two essential DSA approaches: Spectrum underlay

and spectrum overlay.

The spectrum underlay approach enforces rigorous restrictions on the power spectral density

of SUs to make them operate under a noise floor in order to protect PUs from the potential

harm of the secondary network. Therefore, SUs operating in the spectrum underlay approach

endeavor to achieve high data rates by spreading the transmitted signals over a wide frequency

band (UWB). However, the stringent transmission power levels restrain the spectrum underlay
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approach to very short ranges [6]. In contrast, the spectrum overlay approach, which is also

known as the opportunistic spectrum access (OSA), allows SUs to access licensed spectra in

a non-intrusive and opportunistic manner such that SUs detect and utilize unused licensed

bands at a given particular time and location, a.k.a spectrum holes or white space as depicted

in Figure 1.1 where PU activity is shown in power, frequency and time axes. A SU should

detect, utilize and vacate the spectrum holes as shown with arrows in Figure 1.1. To protect

the PUs from secondary network interference, SUs are required to sense the primary channels

(PCs) periodically and evacuate the channel if a PU emerge, that brings in the periodic nature

of sensing and the commonly made assumption of time-slotted operation of SUs.

Figure 1.1: Demonstration of spectrum hole in the dimensions of power, time, and frequency
[5].

As a key technology, Cognitive radios (CRs) [7], [8], have been introduced to discover and

utilize the spectrum holes. As an inclusive of software defined radios (SDRs) and an exclusive

of the traditional radios, distinctive features of CRs can be grouped into two main aspects:

cognitive capability and reconfigurability. Cognition is the capability of learning how to interact

with the surrounding radio environment by gathering information via spectrum sensing. On

the other hand, reconfigurability is the ability of changing the radio parameters (e.g., operating

frequency, modulation type, transmission power, etc.) to take intelligent actions according to
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the perceived cognition through the sensing and learning process in order to achieve the optimal

performance [9].

Spectrum sensing is one of the most critical CRN functions since the performance of spec-

trum hole detection directly a↵ects the primary and secondary network performance. Denot-

ing the absence and the presence of the PU activity by the binary hypotheses H
0

and H
1

,

respectively, detection performance is subject to two types of error probabilities: false alarm

(Pf = P [H
1

|H
0

]) and misdetection (Pm = P [H
0

|H
1

]). While higher Pf results in reduced

spectral e�ciency, higher Pm causes more interference with the primary network. Since the

detection performance of individual SUs is severely a↵ected by propagation channel impair-

ments and hardware limitations (e.g., path loss, shadowing, multipath fading, hidden terminal

problem, noise estimation errors, and receiver uncertainty etc.) cooperative spectrum sensing

(CSS) has been proposed to achieve a cooperative gain by taking advantage of the spatial and

multi-user diversity [10], [11]. Cooperative gain can be defined as the acquired more reliable

detection probability to protect primary network from the SU interference and less false alarm

probability to utilize the spectrum more e�ciently. Unfortunately, cooperative gain is not free

of cooperation overhead which can be defined as any extra design complexity, energy consump-

tion, sensing duration, and communication among SUs induced from cooperation compared to

the individual spectrum sensing [12].

CSS can be divided into two categories based on data sharing methods within the network:

centralized and distributed. In the centralized CSS, SUs report sensing results over a dedicated

common control channel (CCC) to a fusion center (FC) which combines and di↵uses the final

decisions back to SUs via the CCC. Unlike the centralized CSS, SUs communicate among them-

selves over the CCC and conclude in a unified decision under the distributed CSS. Furthermore,

CSS can be classified into two subcategories based on the fusion methods: soft decision fusion

(SDF) and hard decision fusion (HDF). In the SDF, SUs share all observations data which are

then fused with a signal combining technique while in HDF, SUs share their binary decisions

which are combined by a decision fusion rule. Albeit SDF’s superior performance, sharing that

massive amount of observation data results in high energy consumption and communication

overhead which cannot be sustained by SUs with limited energy resources and by the CCC due
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to limited bandwidth availability. In this respect, quantized SDF has become prominent as it

does not only have a reasonable communication overhead but also have a satisfactory detection

performance [13].

In the most primitive sense, the CSS schemes can be divided into the following tasks:

1. Spectrum Sensing Scheduling appoints the best set of PCs to be sensed in order to

maximize the utilization of the secondary network based on the statistical information of

the PU activity obtained from past observations.

2. Spectrum Sensing and SU Assignment attains the optimal assignment of SUs to

sense the scheduled PCs and determines the optimal sensing parameters for each of them

by taking the sensing and reporting quality of di↵erent SUs on scheduled PCs into account.

Based on the local decision reports of cooperating SUs, it also selects the optimal fusion

rule and makes decisions about the PC states.

3. Spectrum Access and Sharing decides on the appropriate spectrum access protocols

and the optimal resource allocation policies among the SUs if the global decision is in

favor of the PU absence.

4. Spectrum Hando↵ and Mobility enforces SUs to evacuate the occupied PCs in the

case of a decision in favor of the PU presence. If it is necessary to find more spectrum

holes to sustain the QoS requirements of the secondary network, it refers to task 1 to find

a new set of PCs to sense for maintaining seamless communication.

However, considering certain objectives and constraints, carrying out the tasks 1, 2, and

4 is non-trivial due to the combinatorial nature of the channel scheduling and SU assignment

problems, and requires high computational power and time complexity even for moderate size

primary and secondary networks. Moreover, for secondary networks with large size of SUs

spreaded over a large geographical area, treating all SUs as a single cooperating entity may

incur high CCC bandwidth, energy and delay overhead. Therefore, grouping SUs into clusters

was shown to be an e↵ective method to alleviate the communication range and energy overhead

problems [14]. Accordingly, a cluster-based CSS scheme should take care of followings: 1)
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Formation of SU clusters to minimize/maximize a certain objective, 2) Determination of the

optimal sensing and reporting parameters of cluster members, 3) Selection of the best cluster

head (CH) which undertakes the role of the FC to coordinate cluster members and make

global decisions, and 4) Scheduling of PCs to be sensed subject to necessary primary network

protection regulations.

1.1.2 Energy E�ciency

To fulfill the appeal of emerging technologies for higher data rates, early research attempts

in CRNs have mainly focused on enhancing the spectral e�ciency by maximizing the discovered

free spectrum without considering the energy restrictions of the CRs. However, a substantial

proportion of mobile and wireless network devices have limited energy resources. Indeed,

considering the fact that 30% of the energy expenditure of mobile devices is caused by wireless

networking and computing hardware [15], EE-CRNs can play a vital role to provide portable

devices with more spectrum for less energy consumption.

Nevertheless, achieving an EE-CRN setting is a formidable task because of the following

practical concerns: 1) Hierarchical structure between primary and secondary networks with

their competing demands, 2) Negative impacts of imperfect sensing and reporting schemes,

3) Ramifications of tackling the SUs’ heterogeneous sensing and reporting qualities, 4) QoS

thresholds and fairness requirement of SUs, and 5) Network architecture complexity and coop-

eration overhead to acquire a satisfactory solution which addresses these multifaceted technical

challenges.

For instance, high QoS benefit for low energy cost expectation of the secondary network is

mainly constrained by regulations to protect the PUs from the SU interference. Hence, there

is need for a CSS scheme which maximizes the secondary network utilization by minimizing

the false alarm rate while providing mandatory protection levels by keeping the misdetection

rate below a certain threshold. Since the signal-to-noise ratios (SNRs) of SUs on the PCs are

mostly given parameters and out of control of the network management, increasing the number

of samples (i.e., increasing the sensing duration) is the only practical way to obtain targeted

false alarm and misdetection rates. However, increasing the number of samples incurs more
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sensing energy consumption and less available time to utilize the PCs as a result of the periodic

nature of sensing.

In a CSS scenario with imperfect reporting, CCC unreliability will naturally impose rela-

tively superior local detection performance on SUs to compensate the reporting loss in order

to reach required global detection and false alarm rates. It is worth mentioning that such a

compensation is still necessary to mitigate the loss caused by the sub-optimality of the fusion

rule exploited at the FC. If SUs have heterogeneous sensing and reporting channel conditions,

obtaining an optimal setting requires a finer level of design attention. To illustrate, enforcing

SUs with non-identical SNRs and reporting error probabilities to have identical local false alarm

and misdetection probabilities may not always yield an optimal outcome in terms of energy

expenditure and system throughput. In a cluster-based CSS, on the other hand, forming SU

clusters in a fair manner falls into a multi-objective optimization problem since each cluster

and its members would like to get enough throughput to get required QoS for every unit of

energy they spent within the CSS.

In case of a primary network with a non-contiguous spectrum, scheduling the PCs with

consideration of induced energy cost and gained utilization also adds an extra dimension to the

aforementioned issues. That is, scheduling a wide and fragmented (i.e., non-contiguous) set of

PCs should also consider the e↵ects of time and energy consumption in radio reconfiguration.

This is also known as the channel switching energy cost whose e↵ect on energy and throughput

e�ciency needs to be considered especially when the initial operating frequency is spectrally

distant from the scheduled PC’s frequency. Another energy expenditure factor related to CSS

scheduling is the reporting energy cost which is surely non-negligible if the CSS operates on an

SDF or quantized SDF basis due to the amount of data required to be transmitted to the FC.

1.1.3 Energy Harvesting

Information and communications technologies have been contributing to 2%-3% of the

global carbon footprint [16], which is very close to the airline industry, and it is expected

to increase annually at a rate of 4% until 2020 [3]. As a revolutionary way of achieving green

communication networks, harvesting energy from alternative natural resources (e.g., solar, vi-



www.manaraa.com

8

brational, electromagnetic, thermoelectric, RF signals, etc.) and converting it to electrical

energy to power communication devices has led the EE communications system design into

a paradigm shift. Unlike the traditional grid-powered and non-rechargeable and/or battery-

powered wireless devices, EH devices are energy self-sustained components which are key to

enable energy self-sustained and self-maintained communication networks. While this approach

yields a more environmentally friendly ICT by reducing the carbon footprint, it establishes

the basis of untethered wireless networks by allowing the deployment of energy self-su�cient

communication nodes within unreachable places (e.g., remote rural areas, the human body,

structure components, etc.) [17].

In addition to the renewable energy resources which may not be always accessible, ambient

RF signals o↵ers another promising energy source with the ability of being available regardless

of time and location. A CR equipped with an RF-to-DC converter circuit can especially benefit

from ambient RF signals in case of a busy PC discovery, thus, it does not have to take the busy

PCs out of consideration any more. If such an SU needs extra energy for its future purposes

and do not have a back-loaded data to transmit, it can wisely prefer to stay in busy PCs and

scavenge the ambient primary signals. However, the amount of harvested energy from ambient

RF signal heavily depends on the wavelength and the received power strength [18]. Another

paramount limitation on RF energy harvesting is the sensitivity of the RF-to-DC converter

circuitry. Even though today’s radios can make information reception with �60 dBm power

sensitivity, RF energy harvesters can operate with signal powers as low as �10 dBm [19].

In this context, communication society recently has focused on EH communications in ad-

dition to the goal of achieving more spectrum for less energy consumption. For a given amount

of energy, conventional EE-CRNs aims to minimize the total sensing energy consumption sub-

ject to the fundamental collision constraint as mentioned earlier. In EH systems, on the other

hand, the energy needed for sensing and data transmission arrives intermittently and in ran-

dom magnitudes as a result of the random nature of energy harvesting sources. Then, the

ultimate goal of energy energy e�cient and energy harvesting (EEH) CRNs would be not only

to minimize the overall energy consumption but to also maintain sensing and transmitting tasks

under random and intermittent energy arrivals. Such a goal dictates an extra fundamental limit
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on the capacity of traditional CRNs: energy-causality constraint which states that the energy

harvested by a time instant must be greater than or equal to the consumed energy until that

time instant [17]. Consequently, these two constraints constitute the fundamental limitations

on EEH-CRNs.

To store harvested energy, super-capacitors are mostly preferred due to their high power

density, good recycling ability, and near perfect storing e�ciency. Albeit their favorable fea-

tures, super-capacitors are half-duplex EH constrained which prevents SUs from charging and

discharging simultaneously [20]. Due to the time-slotted operation of CRNs, such a restric-

tion directly introduces another trade-o↵ factor since available time now must be apportioned

among three time demanding factors: harvesting, sensing-switching-reporting, and secondary

data transmission. Even without half-duplex constraint, this apportion still applies to solely

RF-empowered SUs since a single antenna cannot be used for harvesting, sensing and trans-

mitting simultaneously. In short, all previously argued trade-o↵s and technical challenges are

required to be reconsidered to transform EE-CRNs into EEH-CRNs.

In EH-CSS schemes, energy states of SUs evolve over time such that energy state in the next

timeslot depends on the energy state and the action taken in the current timeslot. At a given

time instant, SUs are required to take necessary actions contingent upon the current stored

energy level, the stochastic energy arrival process, and the amount of data to be transmitted.

For instance, an SU may decide on being in a dormant and/or active states. While an SU

prefers to be in harvesting mode and store energy for future purposes, it favors to be in the

spectrum access mode to sense and transmit in the active state. A mixed strategy may be

an alternative action, where SUs harvest, sense and transmit in a timeslot. From an EEH

perspective, to minimize the energy consumption subject to the collision and energy causality

constraints, optimal harvesting and sensing ratio along with the optimal detection threshold

are required to be calculated for each SU according to their distinctive sensing and reporting

channel conditions. With solely RF-empowered SUs, EEH-CSS scheduling task has especially

a higher design complexity. Besides the set of PCs scheduled for sensing to obtain more

spectrum, SUs may need a set of busy PCs for RF energy harvesting. Such a set of channels
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would especially be beneficial to be exploited in harvesting mode and this set can be formed

based on statistical properties of PC activity and received power strength.

All aforementioned technical challenges and tradeo↵s are crucial to develop an EEH-CRN

which is capable of self-sustaining its spectrum and energy demands in an opportunistic and

non-intrusive manner such that it keeps its harm to the primary network and the environment

at a negligible level while self-maintaining the untethered communication by maximizing its

operation life via energy-e�cient measures. Therefore, this thesis aims to achieve green com-

munications by developing the EHE-CRNs with the consideration of aforementioned practical

concerns and design challenges.

1.2 Main Contributions

All previously addressed fundamental trade-o↵s are inseparably interweaved and have in-

evitably significant impacts on the CSS performance. In the sequel, the main contributions of

this dissertation to the insight and design of green cooperative spectrum sensing and scheduling

are delineated.

1. In Chapter 3, we address EE-CSS policies for large scale CRNs which consist of multiple

PCs and large number of SUs with heterogeneous reporting and sensing qualities on

di↵erent PCs. After developing a general CH selection procedure tat is applicable for

both HDF and SDF schemes, we approach multi-objective and fair clustering problem

from micro and macro perspectives as follows:

1.1. Similar to sensing channels, the CCC is also subject to the adherse propagation

conditions which may result in an imperfect reporting environment. Instead of

using a commonly studied single-hop reporting technique in which cluster members

directly report to the CHs, employing multihop path diversity might result in a

superior reporting performance in terms of robustness, delay and communication

range. Results of [13] have clearly revealed the fact that the a↵ordable bit error

probability (BEP) of the CCC is blocked by a wall at which required SNR to obtain

target detection performance goes to infinity. Thus, we propose a procedure to select
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the CH which yields: 1) The best CH which gives the minimum total multihop error

rate, and 2) the optimal reporting routing path from SUs to the CH using Dijkstra’s

algorithm. Obtained results have shown that the multihop diversity has a superior

robust reporting and a potential to alleviate the BEP wall phenomenon.

1.2. For the micro perspective, we consider clusters as a group of SUs dedicated to sense

a single PC. Although most of the works in the literature traditionally consider the

cooperation of SUs with identical/homogeneous sensing quality metrics (e.g, SNR),

this approach would not yield an optimal cooperation cost in a heterogeneous en-

vironment where SUs experience various SNRs on di↵erent PCs. By enforcing each

SU to report with identical detection and false alarm probabilities at the CH side,

traditional global summary statistic of CH follows Binomial distribution. Never-

theless, in a heterogeneous cluster, SUs with relatively low SNRs must sense longer

to conform to the target reported detection performance. Consequently, avoiding

the heterogeneity returns a higher energy expenditure and a lower throughput since

the CH must wait for the slowest SU with the lowest SNR to feed the final decision

back to the cluster members. In light of these issues, we propose a novel EE-CSS

scheme which tolerates SUs to report with di↵erent probabilities, where the global

summary statistic of CH follows Poisson-Binomial distribution. We further develop

a convex framework which jointly optimizes detection threshold and sensing dura-

tion of each SU to minimize the total energy consumption of the cluster subject to

global PU protection and spectrum utilization constraints. Numerical results has

clearly demonstrated that the taking the heterogeneity into account yield a lower

total energy consumption and higher time left for secondary transmission.

1.3. The negative impact of treating non-identical SUs equally, on the other hand, does

also have significant disadvantages in the SDF based CSS where each SU quantize the

local observations and report corresponding quantization level in a binary sequence.

Conventionally determining a fixed sensing duration for each SU, which is a.k.a.

fixed sample size test (FSST), may not always result in an EE cooperation. After

deriving the distributions of the test statistic over an imperfect multihop reporting
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path, we propose a weighted sample size test (WSST) to obtain a more EE regime by

assigning sensing duration of SUs proportional to their SNRs. Results demonstrated

the achieved performance enhancement by WSST is significant.

1.4. If the spectrum utilization and energy consumption are defined as currency and

commodity, respectively, an ultimate design goal of the macro perspective would be

clustering SUs in such a way that commodity per currency is maximized. Addition-

ally, fairness is another design metric to be considered since an SU would naturally

like to get a fair benefit while spending energy for others. Therefore, we formulate

the multi-objective clustering optimization (MOCO) problem which fairly minimizes

the clusters’ energy consumption while fairly maximizing the achievable throughput.

Then, we adopt and demonstrate how to use the Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) to solve MOCO.

2. In Chapter 4, CSSS of heterogeneous CRNs are considered such that there exists PCs

with di↵erent characteristics and SUs with various sensing and reporting qualities for

di↵erent PCs. Unlike the Chapter 3, only a subset of the PCs are scheduled and sensed

by SUs which can join more than one cluster at a time.

2.1. The energy and spectrum e�ciency are coupled as a single objective such that the

energy spent per achieved data rate is minimized subject to global detection and false

alarm constraints to protect PUs from SU interference and ensure a certain spectrum

utilization, respectively. Accordingly, assuming SUs have di↵erent reporting error

rates for di↵erent PCs, a mixed integer non-linear programming (MINLP) problem is

formulated to determine: 1) the optimal subset of PCs to be scheduled for sensing, 2)

the SU assignment set for each scheduled PC, and 3) sensing durations and detection

thresholds of each SU on PCs it is assigned to sense. Moreover, we formulate the

optimal sensing order to minimize the channel switching latency which is a linear

function of the total frequency distance [21]-[22].

2.2. For specific instances of above combinatorial problem, an equivalent convex frame-

work is developed for heterogeneous CRNs. For comparison, optimal detection and
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sensing thresholds are also derived for homogeneity assumption as a suboptimal

solution to the heterogeneous case.

2.3. Exploiting the convex framework in 2.2, we develop an prioritized ordering heuristic

to order channels under spectrum, energy and spectrum-energy limited regimes.

After that, a scheduling and assignment heuristic is proposed and shown to have a

very close performance to exhaustive optimal solution. The behavior of the CRN

is then numerically studied under these regimes with respect to di↵erent number of

SUs, PCs and SNR distributions.

3. In Chapter 5, we focus on a single cluster where heterogeneous SUs sense a certain PC.

3.1. A full-duplex hybrid EH-CR module is first proposed to mitigate the half-duplex

constraint by exploiting two di↵erent energy storage and harvest energy from both

renewable sources, e.g. solar, and ambient RF signals.

3.2. After demonstrating the di↵erences in the timeslotted operation of SUs due to their

heterogeneous sensing and reporting channel characteristics, we develop the energy

state evolution of both systems under stochastic energy arrivals. To find an optimal

myopic EH policy, a convex optimization frame work is then developed to jointly

obtain the optimal harvesting ratio, sensing duration and detection threshold of

each SU which maximizes the sum of the achievable throughput of cooperating SUs

during the current timeslot subject to collision and energy-causality constraints. Ob-

tained results clearly demonstrated that the combination of the Poisson-Binomially

distributed HDF, which assigns the SUs di↵erent local detection and false alarm

probabilities based on their sensing and reporting channel qualities, and the pro-

posed full-duplex EH system provide the best result in terms of sensing energy cost

reduction, achievable throughput maximization and harvested energy accumulation.

1.3 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, the fundamental elements of

spectrum sensing is provided. The sensing regulations and its practical challenges are first
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detailed in Section 2.1 and Section 2.2. Thereafter, common spectrum sensing techniques is

followed by a comparative summary in Section 2.3. Based on these, proposed cooperation

schemes are discussed in Section 2.4.

Right after a brief introduction to Chapter 3, Section 3.2 presents the related work in

the literature. Section 3.3 describes the generalized best CH selection procedure for single-

bit hard and quantized multi-bit soft decision fusion CSS schemes. Then, Sections 3.4.1.1,

3.4.1.2, and 3.4.1.3 give the details of ideal, HDF-based, and quantized SDF-based CSS schemes,

respectively. Section 3.4.2.1 provides a background in multi-objective evolutionary algorithms

and Section 3.4.2.2 formulates the MOCO problem and explains its solution using NSGA-II.

In the following, simulation results and analysis are presented in Section 3.5. Finally, section

3.6 summarizes the chapter.

Following an overview of CSSS problem, Section-4.3 introduces the system model. Then,

Section 4.4 provides the details of CSS under heterogeneity and homogeneity modes. Section

4.5 derives the coupled energy & spectrum e�ciency and formulates the CSSS problem. Section

4.6 develops the proposed heuristic approached. Finally, simulation results and analysis are

presented in Section-4.7 and Section-4.8 summarizes the chapter.

Chapter 5 begins with an detailed overview of energy harvesting CRNs. Thereupon, Section-

5.3 models the proposed full-duplex system based on stochastic energy arrivals. Section-5.4

introduces the proposed CSS scheme. Thereafter, Section-5.5 characterizes the energy state

evolution of each SU and formulates the convex myopic policy optimization. Numerical results

are presented in Section-5.6 and the chapter is summarized in Section-5.7.

Chapter 6 eventually concludes the thesis and outline its main contributions to the green

CRNs in Section 6.1. Some potential open problems and possible future work is then presented

in Section 6.2.
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CHAPTER 2. BACKGROUND ON SPECTRUM SENSING

Before going into the details and distinguishing features of the sensing techniques, it might

be useful to state some regulations, fundamental limitations and technical challenges associated

with the spectrum sensing for the sake of a clear comparison.

2.1 Sensing Regulations

Regulatory bodies require that signal to interference ratio (SIR) at any primary receiver

does not fall below a certain level that is mostly related to primary receivers’ robustness against

interference, primary band, and service type. For this purpose, the FCC has introduced the

interference temperature model by which an upper bound is defined to limit the aggregate level

of interference caused by multiple transmissions. Accordingly, interference range of SUs can

be defined as the maximum distance at which SU interference is harmful to PUs. Therefore,

SUs within the interference range of PUs must have a detection sensitivity so that they are

able to detect primary signals with certain detection and false alarm probabilities under a

predetermined minimum SNR level [23].

In OSA, while utilizing a spectrum hole, SUs periodically monitor the occupied primary

spectrum by sensing in order to detect the PU emergence. If periodic spectrum sensing is

culminated with a decision in favor of the PU presence, SUs are required to evacuate the

channel immediately in order not to interfere with the primary network communications. This

is one of the most fundamental constraints enforced by OSA based CRNs and will be referred

to as collision constraint throughout this dissertation.

On the other hand, the sensing period is a measure of time which restricts the permissible

maximum interference duration to the primary network and is determined by regulatory bodies
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based on the delay sensitivity of the primary channels. To put it another way, the sensing period

is a metric of the QoS degradation since it determines the maximum delay of evacuating the

primary channel. This periodic character of the OSA system naturally imposes a tradeo↵

between sensing and data transmission as it is not possible to momentarily sense and transmit

using a single antenna. Therefore, sensing duration needs to be kept as low as possible in order

to maximize the available time left for data transmission.

2.2 Sensing Challenges

2.2.0.1 Channel Uncertainty

Due to the radio propagation characteristics, transmitted primary signals experience chan-

nel impairments such as path loss, shadowing and multipath fading. A low received signal SNR

may not necessarily imply the PU absence since primary signal can experience a deep fading or

severe shadowing e↵ects because of obstacles. Under these channel uncertainties, an SU may

claim the absence of PUs in error, which is referred as hidden terminal problem [24] which is

depicted in Figure 2.1.

2.2.0.2 Noise Uncertainty

To meet detection sensitivity regulations, noise power spectral density (PSD) must be care-

fully estimated to set the detection threshold accurately. However, the estimation accuracy is

limited due to the thermal noise variations and calibration errors [25]. Moreover, if the de-

tection solely depends on the received SNR, a weak primary signal may not be distinguished

from noise under noise uncertainty. In this case, the detection threshold must be set according

to the worst case scenario to guarantee that the false alarm rate is below a certain desired

value. The SU is also obligated to satisfy the collision constraint in addition to the false alarm

rate, however, the required number of samples to meet these target probability levels goes to

infinity below an SNR threshold [26], which is also known as the SNR wall. In other words,

even conducting infinite time of sensing would not yield desired detection probability if the

received SNR is below the SNR wall.
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Figure 2.1: Demonstration of channel impairments: hidden terminal, multipath fading,
shadowing, and receiver uncertainty [12].

In Figure 2.1, CR2 is a↵ected by the hidden terminal phenomenon since it receives multiple

replicas of the attenuated primary signal and experiences shadowing due to the building which

obstructs the line-of-sight (LoS) of the primary base station. Even if CR3 has a LoS reception,

the received signal strength is very low as a result of path loss e↵ects over the long distance

and it may require an infeasible sensing duration due to the receiver uncertainty and SNR wall

phenomenon. As aforementioned, SUs are required to distinguish these weak primary signals

with high detection sensitivity that is not always available in practice owing to the hardware

limitations and costs. Alternatively, SUs may increase their sensing duration to obtain more

reliable results, however, this might directly e↵ect the system throughput.

2.3 Local Spectrum Sensing

In a conventional manner, spectrum sensing is considered to be a task of achieving the

spectral awareness about the PC in the sensing space with the dimensions of time, location

and frequency. Although a more involved hyperspace which takes codes and angle of arrivals

as additional dimensions provides a better insight into the spectral opportunity, identifying the

spectrum holes within such a huge hyperspace requires advanced research skills and enormous

computational power. Besides the multi-dimensionality, for a given point within the sensing



www.manaraa.com

18

space, characteristics of the present primary signals (such as energy, waveform, bandwidth,

modulation type, carrier frequency, etc.) have also an impact on the final conclusion of a deci-

sion maker [24]. Based upon these characteristics, a number of sensing techniques is proposed

within the literature. Following subsections reviews these techniques.

2.3.1 General Signal Model

For future references, a general signal model will be considered for primary and secondary

networks comprising of M PCs with indices m and N SUs with indices n, respectively. Carrier

frequency and bandwidth of PC m is denoted by f c
m and Wm, respectively. Defining the idle

and busy state of the primary channel m as hypotheses H0

m and H1

m, respectively, the kth

sample of the received primary signal taken by SU n on PC m is given by

rnm (k) =

8

>

>

<

>

>

:

znm (k) , k 2 [1, Sn
m] , H0

m

hnm (k) pm (k) + znm (k) , k 2 [1, Sn
m] , H1

m

(2.1)

where hnm (k), pm (k), znm (k), and Sn
m denote the complex composite channel gain between the

PU m and the SU n, the transmitted primary signal by PU m, the additive white Gaussian

noise (AWGN) which is modeled as circularly symmetric complex Gaussian (CSCG) random

variable with zero mean and variance �2

z , and the number of samples, respectively.

For the path loss between PUs and SUs, a generic analytic model is adopted to inherit

necessary design parameters from an empirical model [27] in which the received signal power

by the SU n on the PC m is given by

Pr
m,n = Pt

mkm�t
m�r

n



d
0

dnm

�✓
m

(2.2)

where Pt
m and Pr

m,n represent the transmitted signal power by PU m and the received signal

power by SU n on the primary channel m, respectively; km is a unitless constant that depends

on the primary signal wavelength and the reference distance d
0

; ✓m is the path-loss exponent

that represents the rate at which the path loss increases with the distance between the SU

n and the PU m, dnm; and �t
m and �r

n are the transmitter and the receiver antenna gains,

respectively. Accordingly, the complex composite channel gain,

hnm =
q

P r
m,n gnm , (2.3)
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characterizes the propagation medium between the PU m and the SU n in terms of the received

primary signal power, P r
m,n, and the complex channel gain, gnm.

2.3.2 Energy Detector (ED)

Energy detection, also known as periodogram or radiometry, is the most common spectrum

sensing method in CRNs due to its low computational and implementation complexity [24],

[28], [29], [30]. Moreover, on the contrary of some sensing techniques presented below, energy

detectors (EDs) do not require a priori information about primary signals. Consequently, EDs

have been extensively exploited in the literature as the underlying sensing technique as it is a

generic and favorable method thanks to its simplicity, compatibility and low cost.

To detect primary signals, ED measures the received signal energy for a time interval and

compares it with a predetermined threshold to decide on the PU existence. Based on the signal

model given in Equation (2.1), the local test statistic of the SU n on the PC m is given by

Kn
m =

Sn

m

X

k=1

ynm (k)
H1

m

?
H0

m

"nm (2.4)

where the number of samples is the time-bandwidth product Sn
m = Wm⌧nm where ⌧nm denotes the

sensing duration. Throughout the thesis, number of samples will be preferred metric in analysis

of sensing duration and energy consumption since Sn
m and ⌧nm are proportional. Following from

the early work of Urkowitz [31], Kn
m can be described as

Kn
m ⇠

8

>

>

<

>

>

:

�2

2Sn

m

, H0

m

�2

2Sn

m

(2�nm) , H1

m

(2.5)

where �nm is the instantaneous SNR of SU n at channel m, �2

2Sn

m

denotes the central chi-square

distributions with 2Sn
m degrees of freedom and �2

2Sn

m

(2�nm) denotes the non-central chi-square

distributions with 2Sn
m degrees of freedom with a non-centrality parameter, 2�nm.

In the case of deterministic hm,n, i.e. gnm is constant in Equation (2.3), using the cumulative

distribution functions of the aforestated distributions, probabilities of false alarm and detection
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are given as [32]

P f
m,n (S

n
m, "nm) = P (Kn

m > "nm|H
0

) =
� (Sn

m, "nm/2)

� (Sn
m)

(2.6)

P d
m,n (S

n
m, "nm, �nm) = P (Kn

m > "nm|H
1

) = QSn

m

⇣

p

2�nm,
p

"nm

⌘

(2.7)

where � (·) is the gamma function, � (x, a) =
R1
x e�tta�1dt is the incomplete gamma function,

and Qc (a, b) is the generalized Marcum-Q function which is defined as

Qc (a, b) =
1

ac�1

Z 1

b
xce�

x

2+a

2

2 Ic�1

(ax) dx

where Ic�1

is the (c� 1)th order modified Bessel function of the first kind.

On the contrary of deterministic channel gain assumption, if hnm follows a certain distribu-

tion, P d
m,n given in equation (2.7) is the conditional probability detection for a given instanta-

neous SNR, �nm. Therefore, one needs to average this conditional probability over all possible

instants as follows

P d
m,n =

Z

�
QSn

m

⇣p
2x,
p

"nm

⌘

f� (x) dx (2.8)

where f� (x) dx is the fading distribution. In the case of Rayleigh fading, �nm is exponentially

distributed and the closed form expression for equation (2.8) is derived as [33]
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m
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2 (1 + �̄nm)

3

5

where �̄nm is the average SNR [34].

For large Sn
m and normalized noise variance, another renowned and mostly exploited set of

equations for false alarm and detection probabilities is given by [35]

P f
m,n (S

n
m, "nm) = Q

h

("nm � 1)
p

Sn
m

i

(2.9)

P d
m,n (S

n
m, "nm, �nm) = Q

"

("nm � �nm � 1)

s

Sn
m

2�nm + 1

#

(2.10)

where Q (x) = 1p
2⇡

R

+1
x e�y2/2dy denotes the right-tail probability of a normalized Gaussian

distribution. It should be noted that the equation set of (2.9) and (2.10) are necessary to

present for a fair comparison with other studies in the literature, however, it is less general

than the equation set given in (2.6) and (2.7) since authors assume that the primary signal is

complex-valued and phase shift keying (PSK) modulated signal.
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2.3.3 Feature Detector (FD)

In contrast to its simplicity and compatibility, the ED is highly susceptible to noise uncer-

tainty and SNR wall phenomenon as any other moment-based detector. From an information

theoretic intuition, the reliability and the rigor of the sensing decision increases with the in-

crease in acquisition of accurate knowledge regarding the primary signal characteristics. As a

consequence, the ED could not meet required performance level under all circumstances since

it does not take primary signal features into consideration.

However, practical signal structure of the contemporary communication systems has very

distinctive features and the exploitation of which can provide a substantial performance en-

hancement compared to ED. Thus, one of the alternatives for the detection of PU transmissions

is to take the advantage of known statistical properties of the primary signals. Assume that

the primary signals are normally distributed and that enough number of samples are taken to

invoke the central limit theorem (CLT). Considering the fact that Gaussian signals are fully

determined by their first and second moments, the estimated first and second moments of the

primary signals are su�cient to provide practical accuracy to deal with the noise uncertainty

and SNR wall phenomenon [30].

As an illustration, orthogonal frequency-division multiplexing (OFDM), which is one of the

most common techniques in modern communication systems, inserts a cyclic prefix (CP) to each

data block. The CP is simply the same as the last portion of the data symbol and introduces

distinctive correlation properties by which near-optimal spectrum sensing algorithms can be

designed [36], [37]. Denoting the number of symbols in a cyclic prefix and in a data block as

Tc and Td, respectively, the autocorrelation coe�cient of SU m on the primary channel m can

be given as

⇢nm =
Tc

Tc + Td

�nm
1 + �nm

(2.11)

As its local test statistic, a feature detector (FD) employs the log-likelihood ratio (LLR) test

which is given by

Kn
m = ⇤n

m

H1
m

?
H0

m

"nm (2.12)
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where the LLR, ⇤n
m, is conditionally distributed as [36]

⇤n
m|H0

m ⇠ CN
✓

0,
2Sn

m(⇢nm)2

[1� (⇢nm)2]2

◆

(2.13)

⇤n
m|H1

m ⇠ CN
✓

2Sn
m(⇢nm)2

1� (⇢nm)2
, 2Sn

m(⇢nm)2
◆

(2.14)

where CN (·) denotes complex Gaussian distribution. Based on (2.13) and (2.14), the probabil-

ities of false alarm and detection of SU n within cluster m are given by [36]

P f
m,n (S

n
m, "nm) = P

�

⇤n
m > "nm|H0

m

�
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2
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where ⇠nm = 1�(⇢n
m

)

2

2Sn

m

⇢n
m

�

"nm + Sn
m log

�

1� (⇢nm)2
��

+ ⇢nm.

For the multipath reception case, consider a multipath order O with independent tap coef-

ficients gnm(i), for i = 1, 2, . . . , O and assume that gnm(i)s are also independent of the primary

signal and the additive noise. Although the autocorrelation function is spread due to the time

dispersion in a multipath fading channel, averaging the second-order statistics over multiple

OFDM symbols can alleviate the impact of multipath fading to achieve a detection perfor-

mance close to the that of AWGN channel [36]. Accordingly, the average SNR at the SU

receiver is given as �̄nm =
PO

i=1

�̄nm(i) =
PO

i=1

E
⇥

|gnm(i)|2
⇤

�nm where �̄nm(i) is the average SNR

of the ith path. Hence, the detection and false alarm probabilities under multipath fading can

be calculated from (2.15) and (2.16) by substituting �nm with �̄nm. In the sequel, without loss

of generality, AWGN and multipath fading scenarios will be addressed together by assuming
PO

i=1

E
⇥

|gnm(i)|2
⇤

= 1.

2.3.4 Other Techniques

2.3.4.1 Matched Filtering

If the receiver has a priori knowledge about primary signal such as the modulation type,

order, waveform, etc., matched filter is known to be the optimal method for detection [38]. It

requires short sensing time to achieve a certain processing gain such that the number of samples

required to be taken grows by O
�

SNR�1

�

[39]. However, matched filters have very poor
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performance if the transmitted signal information is not accurate and the SU does not have time

and frequency synchronization with the PUs. In addition, the SU needs filter circuitry for every

type of primary signal, which is not practical in terms of hardware cost and implementation

complexity [40].

2.3.4.2 Cyclostationary Feature Detector (CFD)

Auto-correlation function of the primary signals exploited in FDs is not only time-varying

but also periodic, and that is e↵ectively employed by cyclostationary feature detectors (CFDs)

to obtain superior sensing performance [41], [42], [43], [44], [45]. Cyclostationary nature of PU

signals arises from the spectrum redundancy caused by periodicity of modulated and/or coded

signals, which leads to spectral correlation among widely separated frequency components [46],

[47]. Based on the fact that the noise is a wide-sense stationary process without correlation,

transmitted signals can be distinguished from WSS noise using their cyclostationarity features

along with the spectral correlation [46]. Unlike the ED, which is heavily dependent upon

the PSD, analyzing spectrum correlation function [47] and the cyclic autocorrelation function

[48] of primary signals, CFD is able to work well under low SNR conditions. Additionally,

recognizing the distinctive features of primary signals, cyclostationarity can be even employed

to distinguish di↵erent PU transmissions [45].

2.3.4.3 Covariance-Based Sensing (CBS)

The idea of covariance based detectors has originated from the fact that the statistical

covariance matrices or auto-correlations of primary signals and noise are di↵erent from each

other. Thus, CBS is robust against noise estimation uncertainty. In the case of detecting

correlated signals, it gives a superior performance because the test statistics are generated

from covariance matrix of received primary signal samples such as the ratio of its maximum

and minimum eigenvalues [49], the ratio of its diagonal and o↵-diagonal elements [50], and

its maximum eigenvalue [51]. In [52], a cooperative spectrum sensing method is developed by

exploiting a recent result on the limiting distribution of the smallest eigenvalue in complex

Wishart matrices. However, if the exact structure of transmitted signals are unknown to the
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detector, exploitation of blind detectors may give a better result without requiring any prior

knowledge [49], [50].

2.3.4.4 Multiband and Compressive Sensing

To get higher chance of finding spectrum holes, a wide band of spectrum must be sensed,

which intuitively requires higher sampling rates and energy consumption. A natural way of

dealing with wideband sensing is dividing it into multiple subbands and jointly sense for spec-

trum opportunities, which is a.k.a. multiband sensing [53], [54]. The other possible approach

argues that if the original observed signal is sparse in some manner, then it is possible to sam-

ple the received signal at sub-Nyquist rate, which is referred as wideband compressive sensing

[55]. In [56] and [57], wideband compressive sensing is considered under the collaboration of

SUs. For cooperative multihop CRNs, a distributed compressive sensing scheme is developed

by forcing the consensus of local spectral estimates [58].

2.3.5 Summary

In spite of the diverse sensing techniques discussed in this chapter, none of them could be

used as the best choice for any situation. Contingent upon the availability of a priori informa-

tion and environment, there exist many criteria to factor in to decide on the most proper one

such as required accuracy, sensing duration, implementation and computational complexity, and

network requirements. For example, if the a priori knowledge of the signal to be detected is not

available, energy detection is known to be robust to the unknown dispersed channel and fading.

However, ED assumes perfect noise PSD estimation, thus the noise uncertainty results in SNR

wall and high false alarm probability [25]. On the one hand, matched filtering requires perfect

information about the primary signals and accurate synchronization, otherwise its performance

reduces dramatically. On the other hand, FDs and CFDs need to know autocorrelation and

cyclic properties of PUs which may not be available in practice, respectively. Furthermore, this

method requires excessive analog to digital converter capabilities and signal processing abilities

[49]. Even though CFD exhibits good performance under non-stationary noise, cyclic features

may be entirely unavailable because of the adverse propagation environment [24].
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2.4 Cooperative Spectrum Sensing (CSS)

As briefly mentioned in Chapter 1, local detection performance of individual SUs is sus-

ceptible to detrimental channel e↵ects such as path loss, multipath fading, and shadowing,

etc. Even if there exists an on going primary network activity, an SU can observe very weak

signal strength due to shadowing which may be because of the obstacles between the primary

transmitter and the SU. Alternatively, an SU might receive attenuated primary signal copies

from surrounding reflectors in a multipath fading scenario. If an SU is very far away from the

PU transmitter but close enough to the PU receiver, on the other side, it may su↵er from the

receiver uncertainty and treat this weak primary signal as background noise. In all of these

cases, SUs will most probably decide in favor of the absence of the primary network activity

due to weak signal reception and their utilization of the PCs will cause interference to primary

network communication. However, an SU with high SNR can expeditiously and accurately

sense the PC and let SUs with poor channel sensing conditions know about the presence of the

primary activity. As a remedy, cooperation of SUs is proposed to improve sensing accuracy

[59].

In the most primitive sense, cooperative sensing takes the advantage of spatial diversity of

SUs to improve the overall sensing performance of the secondary network which can be referred

to as cooperative gain. For example, receiver uncertainty and hardware cost of the individual

SUs can be alleviated by cooperation such that receiver sensitivity can be adjusted to the

level of path loss for a fixed cost. However, the cooperative gain is not free of the cooperation

overhead which refers to any extra cost of sensing, energy, communication, complexity and

delay.

2.4.1 Categorization of CSS

Based on the local decision sharing method among the SUs, CSS can be categorized into

three models: centralized [60]-[61], distributed [62] and relay-assisted [63].
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Figure 2.2: Categorization of CSS: (a) centralized, (b) distributed, and (c) relay-assisted [12].

2.4.1.1 Centralized CSS

In centralized CSS, SUs perform local sensing and share this information with a decision

maker, which is also known as fusion center (FC), over a dedicated common control channel

(CCC), which is also known as the reporting channel . After receiving and combining all local

decisions, FC makes a final decision regarding the presence of the primary activity based on

a predetermined global detection method. This global decision is then di↵used back to the

cooperating SUs. A centralized cooperation scheme is depicted in Figure 2.2-a where (CR0)

serves as the FC.

2.4.1.2 Distributed CSS

On the contrary, distributed CSS does not require a FC to obtain a global decision regarding

the primary network activity. SUs prefer to communicate among themselves to conclude in

a unified global decision. As shown in Figure 2.2-b CR1-CR5 transmits their local results

to each other using a distributed algorithm. Based on received messages, each SU makes a

global decision employing a local criterion and report back its own decision. This procedure is

repeated in an iterative manner until the distributed algorithm converges into a global decision.

Compared to the centralized CSS, SUs serve as members and FCs at the same time.
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2.4.1.3 Relay-Assisted CSS

In addition to the distributed and centralized CSS, relay-assisted cooperative sensing ex-

ploits the sensing and reporting channel quality diversity of SUs. As an illustration, an SU

with weak sensing channel conditions and strong reporting channel performance can cooperate

with another SU with strong sensing channel conditions and weak report performance as shown

in Figure 2.2. Therefore, the relay-assisted model can be regarded as multi-hop cooperative

sensing which will be addressed in Chapter 3.

2.4.2 Data Fusion Methods

Data fusion is a process of combining reported local sensing data to conclude in a global

decision regarding the activity of primary networks. The type and size of the local sensing

data may di↵er according to the CCC bandwidth and reliability. In the literature, there exists

three well known data fusion methods: 1) Hard decision fusion (HDF) where SUs only report

their local sensing results in hard binary form , 2) Soft decision fusion (SDF) where SUs send

their entire local observations or their own test statistic, and 3) Quantized soft decision fusion

where SUs can quantize their local test statistics and report in the form of a bit sequence. Intu-

itively, SDF can achieve the best performance among others in return for CCC overhead. The

HDF is the simplest and modest method in terms of complexity and bandwidth requirement,

respectively. However, quantized SDF can achieve very high detection performance in return

for relatively higher complexity and CCC overhead.

2.4.2.1 Hard Decision Fusion

The most common fusion for the HDF is K�out�f�N detector which sums reported hard

bits from N SUs and compare it with a threshold to obtain the global decision. Voting rules are

typically considered in three di↵erent cases: 1) OR rule where K = 1 and it requires at least

one SU report the existence of primary activity, 2) AND rule where K = N and it requires all

SUs report the existence of primary activity, and 3) Majority rule where K = dN/2e and it

requires the majority of SUs to report the existence of primary activity. Denoting the reported
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local decision of SU n as un and received local decisions by the FC as ũn, the global test can

be given as

K =
N
X

n=1

ũn
H1

R
H0

K (2.17)

whereH
0

andH
1

denote the binary hypotheses for the absence and presence of PU, respectively.

Based on the distribution of ũn, we define two di↵erent schemes

1. Homogeneous Scheme: ũns are independent and identically distributed (i.i.d) Bernoulli

random variables, thus, K is a Binomial random variable. The practical interpretation

of homogeneous scheme could be put as follows: Denoting P̃ f
n = P [ũn = 1|H

0

] and

P̃ d
n = P [ũn = 1|H

1

], each SU is enforced to adjust their local false alarm and detection

probabilities to satisfy P̃ f
n = P̃ f

n0 , P̃ d
n = P̃ d

n0 , 8n, n0. If the reporting channel is imperfect,

SUs are also required to compensate the channel errors to satisfy the above requirement.

We note that if SUs have identical sensing quality, which is a function of the SNR,

homogeneous scheme gives the optimal results by treating all SUs equally.

2. Heterogeneous Scheme: ũns are independent but unidentically distributed (i.u.d) Bernoulli

random variables, hence, K follows a Poisson-Binomial distribution. This a generalization

of the homogeneous scheme and the interpretation of it could be put as follows: Unlike

the homogeneous scheme, each SU is relaxed to have unidentical reports, so that one

can assign di↵erent local detection accuracy requirements based on sensing and reporting

quality of SUs. As will be pointed out repeatedly throughout the thesis, such a flexibil-

ity yields a performance enhancement in heterogeneous CRNs, assuming homogeneity in

heterogeneous environments may cause significant performance losses.

2.4.2.2 Soft and Quantized Soft Decision Fusion

Chair-Varshney rule is known to be the optimal fusion rule to combine local results and it

is based on log-likelihood ratio (LLR) test [64]. Under Rayleigh fading sensing channels, the

performance of equal gain combining (EGC), selection combining (SC) and switch-and-stay

combining (SSC) is studied using EDs [33]. Results have revealed the fact that SC and SSC have

an order of magnitude cooperative gain while the the EGC reaches approximately two orders
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of magnitude cooperative gain. EGC and maximal ratio combining (MRC) is then studied in

[65] to combine the weighted local measurements. The proposed method reduces to EGC and

MRC under high and low SNR regimes, respectively. A quantized SDF is also proposed by

partitioning the entire range of test statistic in to four subregions. A much more complete

research is conducted in [13] where HDF and quantized SDF schemes are compared with ideal

case under the imperfect reporting channels using maximum output entropy quantizers and

auto-correlation based FDs in SUs. Alternatively, Lloyd max quantizers and EDs is also studied

in [66].

2.4.3 Chapter Summary

In this chapter, we first gave a background on sensing challenges and practical design

limitations, which is followed by a set of various sensing schemes with di↵erent implementation

complexity and local detection performance. As pointed out in the summary, there is no a

sensing technique fits well in all domains of design considerations. While some techniques

are favorable with their low cost and simplicity, they might not be able to give su�cient

accuracy in adverse radio environments. On the other hand, high performance techniques may

require extra computation resources and/or a priori information regarding the primary signal

characteristics. CSS is then introduced to mitigate the inadequacy of individual SUs by taking

the geographical diversity since SUs may not experience the same channel impairments all

places and times. Di↵erent categories of CSS are presented along with common data fusion

techniques. Throughput this thesis, we focus on HDF and quantized SDF methods under the

centralized and relay-assisted CSS schemes with heterogeneous sensing and reporting channel

qualities.
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CHAPTER 3. MULTI-OBJECTIVE CLUSTERING FOR

MULTI-CHANNEL CSS

3.1 Overview

We consider a large scale cluster-based heterogeneous cognitive radio networks comprising

of M PCs and N SUs each of which has di↵erent sensing quality in PCs and di↵erent reporting

quality in the CCC. Such a network setting is depicted in Figure 3.1. Each cluster is responsible

for sensing only one channel at a time. Time is divided into fixed-length slots, T , in each of

which a PC is either in the busy or idle state for the whole slot. SUs can join at most one

cluster during a time slot.

Figure 3.1: Demonstration of a large scale CRN with M = 9 PCs and N = 90 SUs. SUs
assigned to a cluster have a diamond shape with the color of the PU which is sensed by the
cluster. The cluster heads are shown in hexagonal shapes. An example of the multihop

reporting is also illustrated for cluster 2.
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The general problem of cluster-based cooperative spectrum sensing can be described as

obtaining the optimal cluster formations and the optimal values of cooperation parameters of

the formed clusters (e.g., sensing duration, detection threshold, quantization thresholds and

levels, reporting path of each SU, and the head of each cluster, etc.) such that energy cost

and throughput gain is fairly distributed among clusters subject to the collision and spectrum

utilization constraints.

Accordingly, energy and throughput e�cient fair clustering leads into a non-trivial multi-

objective MINLP problem as it inherits the formidable characteristics of multi-objective, integer

and non-linear problems. The hardship of dealing with such a problem may be well understood

when it is compared to a single-objective MINLP which can take a very long running time to

solve even for moderate size of networks.

3.1.1 Chapter Contributions and Novelty

In this chapter, the MINLP related challenges will be handled by approaching this extremely

complex problem from a two tier solution strategy: macro and micro perspectives. While the

macro perspective tackles the SU and cluster association problem considering the intra-cluster

energy costs and throughput gains along with inter-cluster fairness, the micro perspective deals

with the intra-cluster total energy cost and throughput gain. Pictorially, the macro perspective

selects the candidate cluster instances as depicted in Figure 3.1 where each cluster is responsible

for sensing only one PC and the micro perspective finds the optimal cooperation parameters

of the cluster instances.

1. Micro perspective focuses on a given cluster where SUs report their local observations

regarding activities of a PC over a CCC to a CH which fuses the local reports to come up

with a global decision. Similar to sensing channels, the CCC is also subject to channel

impairments which may result in an imperfect reporting environment. Instead of using the

mostly studied singlehop reporting technique in which cluster members directly report

to CHs, employing a multihop path with the minimum error rate among all possible

paths might result in a better reporting performance in terms of robustness, delay, and

communication range. Results in [13] have clearly revealed that the increase in BEP of
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the CCC is blocked by a BEP wall where the required additional SNR to achieve the

ideal CSS performance goes to infinity. To put it another way, for given SNRs, SUs

with unreliable reporting links have to obtain a better local detector performance to

compensate the reporting errors which results in more energy consumption. Thus, we

propose a procedure to find: 1) The optimal reporting route to a specific SU from others,

and 2) The best CH which gives the minimum total multihop error rate induced from the

optimal routing path from cluster members to the CH.

2. Although one of the common and relatively more tractable approach is assuming that SUs

have with identical/homogeneous sensing and reporting quality metrics (i.e., SUs have the

same SNR, sensing duration, detection thresholds, BEP etc.), this assumption would not

yield an optimal cooperation cost in a heterogeneous environment where SUs experience

di↵erent sensing and reporting channel e↵ects. In hard decision fusion (HDF) based

CSS, for example, the CH collects and sums the binary values reported by SUs within

the cluster. By enforcing all SUs to have identical detection and false alarm probabilities

at the CH side, regardless of their sensing and reporting environment, traditional global

summary statistic of the CH follows Binomial distribution. With this approach, SUs

with relatively low SNR and/or high BEP must sense longer to ensure target detection

performance in the heterogeneous case. Consequently, not taking the heterogeneity into

account returns higher energy expenditure and lower throughput since the CH must wait

for the slowest SU to feed the final decision back to the cluster. In light of this, a novel EE-

CSS scheme is proposed to take the advantage of sensing and reporting channel diversities

and to allow SUs to report with nonidentical detection and false alarm probabilities, where

the global summary statistic of CH follows a Poisson-Binomial distribution. A convex

framework is further developed to jointly find the optimal detection threshold and sensing

duration of each SU to minimize the total energy consumption of the cluster subject to

global PU protection and spectrum utilization constraints.

3. This chapter also considers the case of quantized soft decision fusion (SDF) based CSS.

Based on the quantization of log-likelihood ratio (LLR) distribution, each SU determines
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the observed LLR value and reports corresponding quantization levels in a multi-bit

binary sequence to the CH which computes the final decision. Similar to the traditional

HDF case, determining a fixed sensing duration for SUs with nonidentical sensing and

reporting channel quality, which is a.k.a. fixed sample size test (FSST), may not always

result in an EE cooperation. By assigning sensing duration to SUs proportional to their

autocorrelation coe�cient, weighted sample size test (WSST) is proposed to obtain a

more EE regime.

4. If the spectrum utilization and energy consumption are defined as currency and commod-

ity, respectively, the ultimate design goal of the macro perspective would be clustering SUs

in such a way that commodity per currency is maximized. Therefore, a multi-objective

clustering optimization (MOCO) is proposed to fairly minimize the clusters’ energy con-

sumption while fairly maximizing their achievable throughput subject to global detection

and false alarm probability constraints. Since MOCO is a mixed integer problem with

an optimal Pareto set, it is heuristically solved using the Non-dominated Sorting Genetic

Algorithm-II (NSGA-II).

3.1.2 Chapter Organization

The rest of this chapter is organized as follows: Section 3.2 presents the related work in

the literature. Section 3.3 describes the generalized best CH selection procedure for single-

bit hard and quantized multi-bit soft decision fusion CSS schemes. Then, Sections 3.4.1.1,

3.4.1.2, and 3.4.1.3 give the details of ideal, HDF-based, and quantized SDF-based CSS schemes,

respectively. Section 3.4.2.1 provides a background in multi-objective evolutionary algorithms

and Section 3.4.2.2 formulates the MOCO problem and explains its solution with NSGA-II. In

the following, simulation results and analysis are presented in Section 3.5. Finally, section 3.6

summarizes the chapter.
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3.2 Related Work

Some of the recent research addressing the EE-CSS can be exemplified as follows: Using

amplify-and-forward relaying, Huang et al. consider an EE-CSS scheme with the goal of mini-

mizing the total energy consumption subject to detection performance constraints [67]. In [68],

Deng et al. divide the sensing nodes into a number of non-disjoint feasible subsets which satisfy

the detection requirements. Then, they extend the network lifetime by successively activating

each subset while keeping others in a sleep mode. The work in [69] considers a single SU and

multiple PCs and optimizes the average energy cost of spectrum sensing, channel switching,

and data transmission subject to some sensing reliability, delay, and throughput constraints.

In [70], the authors provide a theorem along with the closed-form expression to determine

the optimal number of CRs in order to obtain an EE-CSS. Then, they propose a terminal

assignment strategy. Authors of [71] first derive a closed form expression for SU priority and

detection threshold, then, they propose a convex optimization framework to minimize the en-

ergy consumption in CSS. From a di↵erent perspective, [72] achieves EE-CSS by reducing the

total number of reports exchanged between the SUs and the CH, which is an e�cient approach

where the reporting energy is dominant.

On the other hand, quantized SDF is considered to be a practical yet an e�cient method in

[13] and [66]since SDF reporting a↵ects the bandwidth limitation of CCC. Employing feature

detector, authors in [13] study the e↵ect of channel errors in HDF and quantized SDF-based CSS

and clearly show the existence of the error wall at which successful detection is not possible.

On the other hand, [66] uses an energy detector with a Lloyd-Max (LM) quantizer and its

results show that it gives a better performance than the Maximum-Output entropy quantizer

in [13]. However, studies in [66] and [13] do not consider the energy e�ciency, clustering and

fusion center selection.

The study in [73] is first to address the energy e�ciency in cluster based CSS. They first

propose a voting scheme based on SUs’ own confidence, then develop a cluster-collect-forward

scheme to save energy spent on vote-collection and information exchange. Without targeting

the energy e�ciency [74], Guo et al. obtain the optimal number of clusters to minimize the
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cooperation overhead without any performance loss of reliability. In [75], a clustering technique

is adopted to save energy consumed in reporting results and exchanging information. In [76], to

reduce reporting time and bandwidth requirement, a dynamic CH selection scheme is proposed

based on the sensing qualities of SUs. Kozal et al. propose a multihop reporting scheme to

reduce the reporting power consumption. [77].

As distinct from the existing work, we develop a comprehensive frame work which fairly

divides the SUs into clusters to minimize clusters’ energy cost and maximize their throughput.

Moreover, within each cluster, we took the advantage of multihop reporting diversity to develop

a novel CH selection algorithm which is applicable to both HDF and SDF based CSS schemes.

More importantly, we leverage the sensing quality heterogeneity of the cooperating SUs to

develop energy e�cient HDF and SDF schemes. In particular, a novel HDF method which

allows SUs to report in di↵erent local detection performance is developed along with the convex

optimization framework which finds SUs’ optimal local detection parameters to minimize the

energy expenditure. The same spirit is also applied to the SDF case using WSST which is a

weighted case of the well-known FSST.

3.3 Cluster Head Assignment and multihop Path Selection

Before going into the cooperative spectrum sensing and multi-objective clustering problem

details, how to select the best CH first is needed to be explained because following discussions

are based on the assumption that the best CH and optimal routing path from cluster members

to the CH are given. SUs cooperate among themselves by reporting their local decisions over a

noisy CCC to the CH and receive decision and control feedback from CHs. Even though many

studies in the literature have only focused on a direct singlehop reporting link between SUs and

CHs, this may not always result in a reliable and energy e�cient cooperation between SUs and

CHs, especially when SUs with limited maximum transmission power in a cluster are spread

over a wide area. In this case, the limited communication range of CHs/SUs may cause some

SUs/CHs to lie outside the communication range of each other, or the channel quality between

some SUs and the CH may not be good. Hence, SUs/CHs will not be able to reliably receive
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information from CHs/SUs, due to the channel impairments over relatively large distances,

which will eventually impact the accuracy of the fusion result.

Alternatively, exploiting a multihop method for the reporting phase does not only alleviate

the communication range limitation and poor reporting channel quality but also gives a chance

to exploit an algorithm which finds the best multihop path with maximum success probability

from cluster members to a specific CH. Based on this idea, the SU which gives the minimum

total error rate can be selected as the CH among the cluster members. Taking all of these

into consideration results in a superior reporting performance in terms of robustness, reporting

delay and communication range.

Figure 3.2: Multihop Reporting of SU n within cluster m

3.3.1 Cluster Topology and Path Characterization

The graph representing clusterm, Gm(Cm, Em,⌦m), is defined in terms of the set of SU nodes

Cm, the set of edges Em, and the set of edge weights ⌦m. The neighboring set of SUn 2 Cm

is denoted as  n
m =

�

n0| �n0,n � �̄, 8n0 2 Cm
 

where �n,n0 and �̄ are the received signal SNR

by SU n0 from SU n and the SNR threshold for communication range, respectively. Then,

Em =
n

emn,n0 | n, n0 2 Cm, n 6= n0, n0 2  n
m

o

represents the direct edge/hop from SUn to SUn0 .

Even if the path loss for the edges emn,n0 and emn0,n may be the same, it is highly probable to

experience di↵erent fading e↵ects due to the channel randomness. Therefore, we do not assume
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link symmetry between SU pairs within the clusters. In [78], a procedure is proposed to find

the best CH which gives the minimum total reporting error under the HDF-based CSS. In this

and the following subsection, this procedure will be generalized to support multi-bit reporting

(quantized SDF) methods.

The best CH selection procedure is as follows: Initially, SUs transmit pilot signals to deter-

mine which SUs are in their communication range by identifying the channel quality metrics

among themselves. Following the pilot tone, SUs arbitrarily and temporarily select an SU

among themselves to be the CH and share the channel metrics measured during the pilot tone.

Then, the temporary CH runs an algorithm to find the best CH with minimum total reporting

error along with the optimal multihop routes from all cluster members to the CH. Based on

the results of this algorithm, the temporary CH announces the new CH to SUs and devolve its

responsibilities.

Assuming every SUn 2 Cm employs an Lm-level quantizer with the quantization levels set

Lm =
n

`jm,n|1  j  Lm

o

, a generalized multihop-multibit reporting framework is illustrated

in Figure 3.2 where SUn first obtains the quantized LLR value from observed local LLR ⇤n
m

such that ⇤̂n
m = q(⇤n

m) = `jm,n, 1  j  Lm based on the quantization scheme which will be

described in Section 3.4.1.3. Then, the encoder maps the observed quantization level `jm,n into

a bm = log
2

(Lm)-bit binary codeword, c0m,n = g(`jm,n). SUs operate on these codewords using

a decode and forward (DF) protocol in a bit-by-bit basis over the path from SUn to any other

cluster member SUn0 , which is denoted by n n0 and consists of independent Hn
m-hops. Each

hop is modeled as a binary symmetric channel (BSC) and is characterized by its Lm ⇥ Lm

channel transition matrix, Th, 1  h  Hn
m. The entry in the jth row and ith column of Th,

thi,j , is the probability of detecting cim,n given that cjm,n is transmitted from the previous node,

which is given by

thi,j = Ph(c
i
m,n|cjm,n) = (1� ✏h)

b
m

��(i,j)✏�(i,j)h (3.1)

where ✏h is the crossover probability of the hth hop and �(i, j) is the Hamming Distance between

cim,n and cjm,n, 1  i, j  Lm. Exploiting Th matrices, the end-to-end multihop transition
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matrix can be calculated as

Tn n0 =

Hn

m

Y

h=1

Th (3.2)

which follows from the independent hop assumption and Markov property resulting from the

nature of DF protocol which means that the detected symbol from the previous hop is the

transmitted symbol for the next hop. Consequently, the i, j entry of Tn n0 gives the proba-

bility of receiving the LLR quantization level `im,n given that the source transmitted the LLR

quantization level `jm,n,

tn n0
i,j = P(⇤̃n

m = `im,n|⇤̂n
m = `jm,n), 1  i, j  Lm (3.3)

where ⇤̃n
m = g�1

⇣

cH
n

m

m,n

⌘

= `im,n denotes the reconstructed (received) quantization level.

3.3.2 The Best Cluster Head Selection

Denoting the cardinality of Cm as |Cm| = Cm, among Cm SUs, CH is the SU that gives the

minimum total reporting error induced from the optimal routes from cluster members to the

CH. We weight the hop/edge from any SUk 2 Cm to any SUl 2 Cm with the symbol success

probability (SSP) wm
k,l which is nothing but any main diagonal element of the channel transition

matrix of the hop. Depending upon this edge weighting1, SSP of the multihop path from SUn

to an arbitrary CH SUn0 is given by ⌦(n  n0) =
Q

k,l2n n0 wm
k,l. In fact, the optimal path

which maximizes the ⌦(n n0) is the one which minimizes the negative sum of logarithms of

⌦(n n0) as follows

n! n0 = argmin
n n0

0

@�
X

k,l2n n0

log(wm
k,l)

1

A (3.4)

By transforming the computation from a multiplication operation into a summation operation,

Dijkstra’s algorithm can be employed to calculate the reporting route with the minimum path

cost. Defining ⌦n0
m as the total reporting error probability induced from selecting SUn0 2 Cm

to be the CH of cluster m, ⌦n0
m = �

P

n2C
n

n 6=n0
log (⌦ (n! n0)), the SU gives the minimum total

reporting error is chosen to be the best CH as follows

CHm = argmin
n02C

m

⌦n0
m (3.5)

1
We ignore the case in which a symbol may be corrupted in an even number of hops, hence resulting in correct

reception of the symbol, since the probability of this occurrence is very small
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3.4 Multi-Objective Clustering Optimization

3.4.1 Micro Perspective: Intra-Cluster Optimization

Albeit its simplicity and popularity, ED operates under the assumption of perfect noise

variance knowledge, which results in a poor detection performance under estimation errors.

Also, noting that ED is subject to an SNR wall under which accurate detection is impossible,

exploiting known features of primary signals can provide SUs with an improved detection

performance and robustness [30]. Accordingly, we prefer to use a FD which detects PUs using

the second-order statistics of primary signals.

3.4.1.1 Benchmark: Ideal CSS

The ideal CSS scheme is first proposed as the performance evaluation and comparison of

the hard and soft decision fusion schemes is built upon the energy loss between the proposed

and ideal cases. In the ideal case, CH collects exact LLR values reported from SUs over a

perfect CCC and obtains global summary test statistic as follows

Kide
m =

C
m

X

n=1

⇤n
m

H1
m

R
H0

m

idem (3.6)

Based on the local LLR distributions given in (2.13) and (2.14), conditional distributions of

the global test statistic are given as

Kide
m |H0

m ⇠ CN
 

0, 2
C

m

X

m=1

Sn
m(⇢nm)2

[1� (⇢nm)2]2

!

(3.7)

Kide
m |H1

m ⇠ CN
 

2
C

m

X

m=1

Sn
m(⇢nm)2

1� (⇢nm)2
, 2

C
m

X

m=1

Sn
m(⇢nm)2

!

(3.8)

which reduces to the fixed sample size test (FSST) in [36] if we set Sn
m = Sm, 8n. Following

from (3.7) and (3.8), global false alarm and detection probabilities, Qf
m = P

�

Kide
m > idem | H0

m

�

and Qd
m = P

�

Kide
m > idem | H1

m

�

, can be derived similar to (2.15) and (2.16). Accordingly, the

optimal energy expenditure of cluster m is referred to as

Eide
m = min

Sn

m

,ide

m

n2C
m

(

X

n

Sn
m | Qd

th  Qd
m, Qf

m  Qf
th

)

(3.9)

which can be equivalently written as a convex problem due to the linearity of the objective

function and the log-concavity of the constraints using similar steps followed in Appendix A.1.
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3.4.1.2 Hard-Decision Fusion Based CSS

For a given SU cluster formation Cm and the CH selection as described in the previous

section, each SUn 2 Cm, 8n reports their final binary decision unm 2 {0, 1} to the cluster head

CHm = SUc 2 Cm over the optimal multihop route between SUn and CHm, n ! CHm,

with the BER pn!CH
m

which is any main diagonal entry of the end-to-end transition matrix,

Tn!CH
m

. If we denote the received decision bit by the CHm as ũnm 2 {0, 1} , local false alarm

and detection probabilities received by the CHm are given by

P̃ d
m,n = P [ũnm = 1|unm = 0]P

⇥

unm = 0|H1

m

⇤

+ P [ũnm = 1|unm = 1]P
⇥

unm = 1|H1

m

⇤

= tn!CH
m

1,0

⇣

1� P d
m,n

⌘

+ tn!CH
m

1,1 P d
m,n (3.10)

P̃ f
m,n = P [ũnm = 1|unm = 1]P

⇥

unm = 1|H0

m

⇤

+ P [ũnm = 1|unm = 0]P
⇥

unm = 0|H0

m

⇤

= tn!CH
m

1,1 P f
m,n + tn!CH

m

1,0

⇣

1� P f
m,n

⌘

(3.11)

We define the test statistic for the global decision employed in CHm as

Khd
m =

X

n2C
m

ũnm

H1
m

R
H0

m

hdm (3.12)

which is known as the k-out-of-N rule where CHm decides on H1

m for PC m if at least hdm

of SUs report 1, i.e. Khd
m � hdm . In the literature, Khd

m has been considered to be a binomial

random variable under the assumption of independent and identically distributed (i.i.d) local

detection and false alarm probabilities, i.e. P̃ d
m,n = P̃ d, P̃ f

m,n = P̃ f , 8n. This conventional

approach assumes a cluster consisting of SUs with homogeneous sensing and reporting quality.

However, a more general approach is necessary to achieve a more EE-CSS scheme by taking the

heterogeneity of SUs into consideration. Hence, having non-identical local detection and false

alarm probabilities and reporting path characteristics, Km has a Poisson-Binomial distribution
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by which global detection and false alarm probabilities are given as [79]

Qd
m = P

⇣

Khd
m � hdm |H1

m

⌘

=
C

m

X

hd

m

X

A2F


hd

m

Y

i2A
P̃ d
m,i

Y

j2Ac

⇣

1� P̃ d
m,j

⌘

(3.13)

Qf
m = P

⇣

Khd
m � hdm |H0

m

⌘

=
C

m

X

hd

m

X

A2F


hd

m

Y

i2A
P̃ f
m,i

Y

j2Ac

⇣

1� P̃ f
m,j

⌘

(3.14)

where Fhd

m

is the set of all subsets of hdm integers that can be selected from {1, 2, 3, . . . , Cm}

where Cm is cardinality of Cm. Since F
m

has
�C

m

hd

m

�

elements, using an e�cient method to

calculate (3.13) and (3.14) is very important for time complexity, especially when Cm is very

large. For this purpose, probability mass function (pmf) and cumulative distribution function of

Poisson-Binomial random variables can be expeditiously calculated in order of O(Cm log
2

Cm)

from polynomial coe�cients of the probability generating function of Khd
m [80]. Another im-

portant decision phase design parameter is the optimal voting rule selection for clusters. In

Section 3.5, the impact of the voting rule on the sensing reliability and energy e�ciency will

be shown with respect to reporting error and energy consumption.

Regardless of the type of detector employed in SUs, detection performance is a function of

the observation duration and sensing channel characteristics. Although obtaining more sam-

ples from the primary signal yields more accurate results, it is extravagant with the power

consumed in analog to digital conversion and fast Fourier transformation, which are known

to be the two major energy demanding components of the receiver [81]. In other words, the

more the SUs collect samples the more the energy expended to perform conversion and trans-

formation operations to calculate required test statistics. Depending upon the factors above,

the energy spent for sensing and processing per sample is assumed to be identical for each

SU, i.e., Es
m,n = Es, 8m,n. It is also assumed that the SUs transmit with identical report-

ing energy per bit, Ex
m,n = Ex, 8m,n. To reduce the notational complexity, the optimization

variables and parameters related to cluster m is represented in a vectorized form, for example,
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sm = [S1

m, . . . , SC
m

m ]T . Then, the energy consumed in cluster m is given by

Ehd
m = Es1

Tsm + Ex1
Thm (3.15)

where 1 and hm denote vector of ones and the number of hops to the CHm.

P 3.1 (sm, "m) :

1: min
sm,"m

Ehd
m = Es1

Tsm + Ex1
Thm

2: s.t. Qd
th  Qd

m(P̃d)

3: Qf
m(P̃f )  Qf

th

Accordingly, Hard Decision based General Problem (P 3.1) formulate the problem of minimiz-

ing the total energy consumption induced from sensing and reporting activities of SUs within

cluster m for given voting rule hdm and the number of hops hm calculated from Section 3.3.

In P 3.1, the objective in Line 1 is a linear function of sm which needs to be minimized with

respect to sm and "m. Lines 2 and 3 are global constraints of cluster m to satisfy required

protection of PUs from SU interference and su�cient spectrum utilization to SUs, respectively.

Even if P 3.1 has a linear objective, it is not in a general convex optimization problem

form due to the non-convex nature of the error function in (2.15) and (2.16) where erfc(·) is

a convex and concave non-increasing function for erfc(·) � 0.5 and erfc(·)  0.5, respectively.

Based on the convex composition rules [34], to have P f
m,n and P d

m,n to be convex and concave

functions in (Sn
m, "nm), Hessian matrix of the inside expressions in (2.15) and (2.16) must be

negative and positive semi-definite, respectively. However, both of them are neither positive

nor negative semi-definite, thus, neither convex nor concave functions.

To alleviate this issue, P 3.1 is transformed into a bilevel optimization with convex upper

level problem (ULP) and lower level problem (LLP) based on the following parameterized

nature of the P 3.1. For a fixed "̄nm in the feasible set

Fm =
n

"nm, Sn
m | Qd

th  Qd
m(P̃d), Qf

m(P̃f )  Qf
th, 8n 2 Cm

o

,

as Sn
m increases, Ehd

m , P d
m,n, P̃

d
m,n, and Qd

m(P̃d) increase, 8n 2 Cm. Hence, optimum Ehd
m is

attained at the point Qd
m(P̃d) = Q̄d

m,n. For a fixed S̄n
m, on the other hand, P f

m,n, P d
m,n, P̃

f
m,n,
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P̃ d
m,n, Q

f
m(P̃f ), and Qd

m(P̃d) increase as "nm decreases. Noting that Ehd
m is not a function of "nm,

increase of Qf
m(P̃f ) is bounded by Qf

th, thus, the minimum feasible "nm at Qf
m(P̃f ) = Q̄f

m. In

this fashion, the "mis obtained by parameterizing sm in the LLP and achieve the minimum

Ehd
m by parameterizing "m in the ULP.

P 3.1-ULP (sm — "̄m) :

1: min
sm

Em = Es1
Tsm + Ex1

Thm

2: s.t. � log(Qd
m(P̃d))  � log(Qd

th)

3: �Pd(sm, ✏̄m) ��0.5

4: 3A"̄m/B � sm � 3A"̄m/B�⇢m

5: "̄m 2 S (sm)

P 3.1-LLP ("m — s̄m) :

1: min
"m

�

�

�

log(Qf
th)� log(Qf

m(P̃f ))
�

�

�

2: s.t. Pf(s̄m, ✏m) � 0.5

where � denotes element wise non-equality. In P 3.1-ULP, the total energy consumption of

cluster m is minimized for a given "̄m which is obtained by exploiting the optimal solution set

of P 3.1-LLP for a given s̄m, S (sm) = { "̄m | "m 2 argmin{Fm}} . The constraint in Line

2 is the standard convex form of the first constraint in P 3.1. Constraints in Line 3 and 4

are introduced to preserve the convexity of the problem. In P 3.1-LLP, the minimum feasible

"m is obtained for given sm at the point of Qf
m(P̃f ) = Qf

th. Once more, the only constraint

is introduced to preserve the convexity of the problem, and interested readers are referred to

Appendix A.1 for a more detailed convexity analysis.

3.4.1.3 Quantized Soft Decision Fusion Based CSS

As a remedy for the communication overhead which stems from reporting the raw LLR

values directly to the CH, quantization is an attractive tool to achieve more accurate sensing

yet a reasonable CCC overhead. In this regard, while [13] employs a Maximum Output Entropy

(MOE) Quantizer to maximize the output entropy, the authors of [66] implement a Lloyd-Max
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(LM) quantizer to minimize the local quantization distortion and shows that LM provides a

better performance than MOE.

Denoting the probability distribution function (pdf) of ⇤n
m as f

⇤

n

m

(x), an Lm-level quantizer

divides x by Lm�1 thresholds, which is denoted by the set �n
m =

n

�j
m,n|1  j  Lm

o

, into Lm

non-overlapping intervals, which is denoted by the set Ij
m,n 2

⇣

�j�1

m,n,�
j
m,n

i

, j = 2, 3, . . . , Lm�

1. These intervals are represented by the quantization level set Ln
m =

n

`jm,n|1  j  Lm

o

which

comprises of discrete outputs of the quantizer function q(·). By doing so, the pdf is converted

into a probability mass function (pmf) such that the observed ⇤n
m fall into an interval with the

probability calculated by the area of the interval under f
⇤

n

m

(x), i.e.,

p
ˆ

⇤

n

m

(`jm,n) = P
�

⇤n
m 2 Ij

m,n

�

=

Z

�

j

m,n

�

j�1
m,n

f�n

m

(x) dx (3.16)

However, pmf of the received quantization levels, p
˜

⇤

n

m

(`im,n), does not follow the the same

distribution any more because of the imperfect reporting. That is, a quantization level received

at the CH may result from any transmitted level at the source. Taking all possibilities into

account, the p
˜

⇤

n

m

(`im,n) can be written in terms of the end-to-end transition matrix entries as

follows

p
˜

⇤

n

m

(`im,n) =
L
X

j=1

P(⇤̂n
m = `jm,n)P(⇤̂n

m = `im,n|⇤̂n
m = `jm,n) =

L
X

j=1

P(⇤̂n
m = `jm,n) tn n0

i,j (3.17)

After collecting all reports, the CH sums ⇤̃n
ms and compare the global test statistic Ksd

m with a

threshold to decide on the channel occupancy as follows

Ksd
m =

C
m

X

n=1

⇤̃n
m

H1
m

R
H0

m

sdm (3.18)

It is worth noting that the global test statistic is the summation of Cm independent discrete

random variable, thus, its pmf can be derived using convolution sum of marginal pmfs given in

(3.17) [82]. Therefore, the support values of global pmf is the Cartesian product of reporting

SUs’ quantization levels, i.e. Lm = L1

m ⇥ · · ·⇥ LC
m

m . Consequently, the global false alarm and

detection probabilities are given as

Qd
m = P

⇣

Ksd
m � sdm |H1

m

⌘

(3.19)

Qf
m = P

⇣

Ksd
m � sdm |H0

m

⌘

(3.20)
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Accordingly, the Soft Decision based General Problem (P 3.2) formulate the minimization

problem of the total energy consumption induced from sensing and reporting activities of SUs

within cluster m for a given quantization bit number bm. By use of FSST, P 3.2 can be written

as

P 3.2 (Sm,sdm |bm) :

1: min
S
m

,sd

m

Esd
m = CmEsSm + Exbm1Thm

2: s.t. Qd
th  Qd

m

3: Qf
m  Qf

th

where Qf
m and Qd

m are monotonically decreasing with sdm while Qd
m is monotonically increasing

with Sm for a given sdm , ̄sdm . Then, by parameterizing the detection threshold as

̄sdm = min
x2L

m

n

P(Ksd
m > x | H0

m)  Q̄f
m

o

, (3.21)

the optimum value is attained at Qd
m = Q̄d

m. Due to the linearity of the objective and monotonic

nature of the cumulative distribution functions, P 3.2 can simply be solved by Golden Section

Method. Even though setting a fixed sample size for each SU and minimizing the energy

expenditure is optimal in a homogeneous cluster, this may not always yield an optimal result

in a heterogeneous cluster. Under the venue of heterogeneous cluster, we propose a weighted

sample size test (WSST) approach where total sample number under FSST is weighted based

on SUs’ autocorrelation coe�cients as follows

Sn
m = CmSm

⇢nm
P

n2C
m

⇢nm
(3.22)

In other words, instead of sharing the total CmSm number of samples equally as in FSST,

SUs share it proportional to their sensing quality, ie. ⇢nm. Even if it may not be the optimal

solution, numerical results shows a significant performance enhancement.

3.4.2 Macro Perspective: Inter-Cluster Optimization

3.4.2.1 Background on Multi-Objective Evolutionary Algorithms

Multi-objective optimization (MO), a.k.a multi-criteria or vector optimization, is a process

of optimizing a collection of objective functions systematically and simultaneously . Unlike the
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single-objective optimization, there is no single global solution to a multi-objective problem

and it is important to determine a set of solutions which fit a criteria to be the optimum. Such

a point is predominantly known as Pareto optimal [83], definition of which is given as follows:

Definition 3.1: Pareto optimal: If we denote the decision vector as x , the feasible decision

space as X, and the objective function vector as F (x), a point x? 2 X is Pareto Optimal i↵

there does not exists any other feasible point x 2 X such that F (x)  F (x?) and Fj (x) 

Fj (x?) for at least one function.

For a given problem, Pareto optimal set might be consisting of multiple Pareto optimal

points. In this case, the designer should distinguish the di↵erences between the optimal points

and make a further decision based on the priority of the objective functions which is generally

problem specific. We note that Pareto optimal points are also referred to as non-dominated

points due to the intuition of condition given at the end of the Definition 3.1.

Evolutionary algorithms (EA), which are generic population based meta-heuristic approaches

inspired by biological evolution, were shown to be performing well for many MO problems if

it is adapted and applied carefully. In particular, genetic algorithm is one of the most popular

EAs the specific mechanics of which adopts the terminology of microbiology and genetic op-

erations. For example, population represents a set of solutions and a generation represents an

iteration. While a chromosome is comparable to a single candidate solution, a gene is simply

a single entry of a chromosome [84].

Since they do not need the gradient information, EA can be e↵ective regardless of the

objective functions and constraints. EAs combine the use of random numbers and information

from previous generations to evaluate and improve population of solutions. Encoding is the

first step of the implementation, which can be described as determination of the form of a

chromosome. Following the proper design of the encoding scheme, an initial population of

chromosomes is randomly generated, which is the first generation, and three essential genetic

operations are iteratively applied to this initial population: mutation, crossover, and selection.

As being analogous to the terminology in biology, crossover is a way of introducing variations

into the population of designs by mixing two di↵erent populations. While mixed populations are



www.manaraa.com

47

called parent, resulting new members of the population right after the crossover operation are

called children. Deciding on the properties of the crossover operation is a heuristic design issue

and there exist many ways to do it including tournament selection, rank selection, truncation

selection, and so on. Mutation operation, on the other hand, is introduced for maintaining

the genetic diversity from one generation to the next. It is also analogous to its biological

counterpart and randomly alters one or more gene values in a chromosome from its initial

state. For example, in case of a binary valued chromosome, it switches some of the genes from

zero to one or vice versa. Selection involves choosing the chromosomes from current generation

to be employed in the next generation based on the fitness value which is simply the value of

the objective function for a given design vector, (i.e., chromosome).

When it comes to applying genetic algorithms into multi-objective problems, it is required

to determine how to consolidate the notion of Pareto optimality, validate the constraints and

decide which potential members should be passed on to the next generation. Hereupon, we

consider and employ NSGA-II which is a fast and elitist multi-objective genetic algorithm

(MOGA) [85] where a random parent population P
0

is first created for the initial generation

and the usual genetic operators are used to create an o↵spring population Q
0

of size O. Since

elitism compares a current population with the previously found Pareto set, the tth generation

is described di↵erent from the initial one as shown in Figure 3.3:

First, a combined population Rt = Pt [ Qt of size 2O is formed by merging Pt and Qt

and the population Rt is sorted according to non-domination. Then, the best O members of

the members are selected to be the parents of the next generation, Pt+1

, using the crowded-

distance operator. After that, selection, crossover and mutation operators are executed on Pt+1

to create the o↵spring population of the (t+1)th generation, Qt+1

. Omitting the further details

of NSGA-II, interested readers are referred to [85] for broader and in-depth explanations.

3.4.2.2 Multi-Objective Clustering Problem Formulation

Even though the clustered CSS paradigm is highly exploited in the literature for sensing a

single channel, the multi-channel case, which requires clustering potential SUs to sense multiple

PCs with the consideration of energy-throughput e�ciency objectives along with the sensing
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Figure 3.3: Non-dominated Sorting Genetic Algorithm-II procedure

reliability constraints, has not been studied in depth yet. For a given sensing period, if there

exists N SUs available to help with sensing and there exists M potential PCs to sense, a

clustering of the SUs is required to minimize/maximize the intra-cluster and balancing the

inter-cluster energy expenditure/throughput subject to the cooperation reliability constraints.

The indicator function Im (n) is defined to represent the membership of SU n in cluster m. For

each cluster, three types of objective vectors are defined to be minimized: F 2 RM , G 2 RM ,

and H 2 R2 with elements

Fm = Em, 1  m M (3.23)

Gm = max
n2C

m

Sn
m, 1  m M (3.24)

H
1

= max
m

Fm �min
m

Fm, 1  m M (3.25)

H
2

= max
m

Gm �min
m

Gm, 1  m M (3.26)

where Fm denotes the intra-cluster total energy consumption minimization within cluster m,

Gm denotes the intra-cluster maximum sensing time minimization within cluster m, such that

the time available after sensing phase is maximized for maximizing the achievable throughput.

H
1

and H
2

handle the inter-cluster total energy consumption and throughput balance, respec-
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tively. Based on these objectives, the multi-objective clustering Algorithm 3.1 which clusters

the network is formulated as follows:

Algorithm 3.1 : MOCO

1: Min F, G, H

2: s.t.
PM

m=1

Im (n)  1, 8n
3:

PN
n=1

Im (n) � 1, 8m
4: Qd

th  Qd
m, 8n

5: Qf
m  Qf

th, 8n
6: ⇢m,n  ⇢, 8m,n

Line 2 enforces that an SU can sense at most one channel during a sensing period. Line

3 makes sure that each PC is sensed by at least one SU. Lines 4 and 5 are global decision

probability constraints need to be satisfied for reporting and decision phase reliability. The

constraint in Line 6 on the sensing time is especially beneficial to take SUs with unnecessarily

low sensing quality out of consideration to reduce the amount of time in evaluating the fitness

functions.

As mentioned earlier, Algorithm 3.1 is a multi-objective non-linear combinatorial optimiza-

tion problem which is well known to be NP (Non-deterministic Polynomial-time)-hard. Since

it has conflicting objectives, there may exists a set of non-dominated solutions by which none

of the objective functions can be improved without degrading some of the other objective val-

ues. Finding non-dominated solutions of such a combinatorial problem requires an infeasible

computation time, especially for large numbers of SUs and PCs. Therefore, employing meta-

heuristic methods to obtain a su�cient solution within a reasonable time frame is preferable in

practice. In this respect, chromosome encoding scheme shown in Table 3.1 is exploited. Each

chromosome vector represents a macro perspective solution, s 2 (0 [ Z)+N . whose indices

(genes) represent SUs and corresponding values of the vector represent the cluster to which

SUs are assigned. That is, s is a clustering instance of the network as shown in Figure ?? and

we need to evaluate the micro perspective to obtain its corresponding fitness value. Note that

if a gene has a value of 0, then the corresponding SU is selected to sense no PC.
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Table 3.1: A random chromosome representation for solution s

PUs M � 5 M 4 · · · m · · · 2 M � 1

SUs 1 2 3 · · · n · · · N � 1 N

Therefore, the constraint in Line 2 which requires an SU to be assigned at most one PU

is already satisfied. For the constraint in Line 3, chromosomes are checked at the end of

every genetic operation and genes violating these constraints are replaced with a proper value

randomly. Constraints in Line 4 and 5 are handled directly by the method proposed in NSGA-

II. At each generation, the indices of solution s which have common values is grouped into the

same cluster, and evaluate fitness functions and constraint values following the steps detailed

in Section 3.4. Finally, solutions are ranked and sorted based on their fitness value to create

the next generation. This iterative procedure is repeated until a target generation size, G, is

satisfied.

3.5 Results and Analysis

The primary network is assumed to be using OFDM technology as it is a key technique with

a broad range of employment in today’s wireless systems. Due to the practical and theoratical

considerations, a symbol and the cyclic prefix length of 32 and 8 is exploited, respectively.

Thereupon, a single OFDM block is enough to invoke the central limit theorem to keep results

consistent with the theory. All simulation results were obtained and plotted using Matlab.

Table 3.2: Default parameters used for obtaining results

Par. Value Par. Value Par. Value

E
s

1µJ/sample W
m

1MHz �2
z

1

E
x

0.07mJ/bit T
c

8 T
d

32

N 40 M 4 P 50

Qd

th

0.99 Qf

th

0.01 G 20

T 2 �r

m,n

,�t

m,n

1 ✓
m

3
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3.5.1 Cluster Head Selection

To demonstrate the performance of proposed multihop reporting and the CH selection

procedure, the total reporting error is depicted in Figure 3.4 for the network scenario given in

Figure 3.1. In Figure 3.4, the green dashed line with star markers shows the total reporting

error caused by multihop technique for each cluster based on the clustering topology in Figure

3.1. On the other hand, the solid red line with square markers and the dashed red lines

with diamond markers show the worst and the best case of singlehop technique, respectively.

Comparing to the best case singlehop reporting, a superior performance is obtained through

the proposed method.
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Figure 3.4: Comparison between singlehop and multihop approaches

However, Figure 3.4 only considers a single network topology realizations and it is necessary

to evaluate the performance over a large number of randomly generated network topologies.

Therefore, a cluster of 10 SUs is randomly distributed over a 200 m ⇥ 200 m area. Direct

reporting links among SUs are modeled as Rayleigh flat fading channels with random channel

gains along with the simplified path loss model with random path loss exponents, and a constant

reference distance, d
0

= 20m. Using 5000 random cluster realizations, we have calculated the

total reporting error induced from the proposed multihop CH selection and the singlehop CH

selection method where an SU with the minimum singlehop total reporting error is selected to

be the CH. Results show that the total/average BEP of proposed CH selection and multihop
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reporting method outperform the total/average BEP of single hop case by about an order of

magnitude which can be observed from the Figures 3.8 and 3.10 in the following subsections.

3.5.2 CSS with Hard Decision Fusion

To analyze the inherited features of the proposed HDF-based CSS, a heterogeneous cluster

is first considered such that it consists of 5 SUs with SNRs [0,�5,�15,�20,�25] dB. Since

a comparison of the traditional and proposed approaches is necessary, the reporting error is

omitted in this example for clarity. Using traditional and proposed HDF with majority voting

rule (hd = 3) and global detection and false alarm probability targets of Qd
th = 0.99 and

Qf
th = 0.01, respectively, obtained results are demonstrated in Figure 3.5.
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Figure 3.5: A simple heterogeneous cluster instance to compare traditional and proposed
HDF-based CSS.

In subfigures (a) and (b), while traditional approach enforces SUs to report with local

detection and false alarm probabilities of 0.9 and 0.1, respectively, proposed method enforces

SUs with relatively high SNRs to have perfect detection and false alarm probabilities. For the

values in (a) and (b), subfigure (c) demonstrates the sensing duration in terms of the number

of samples where it clearly reveals the fact that enforcing low SNR SUs to have identical local

detector performance requires large numbers of samples. Thus, this dominantly e↵ects the

total energy consumption and the achievable throughput for the cluster. Based on subfigures

(a)-(c), subfigure (d) shows the superior performance of the proposed method in terms of the

total sensing duration of SUs and available time left for secondary data transmission.
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Figure 3.6: Total error rate vs di↵erent voting rules and cluster sizes

To show the e↵ect of the voting rule on the reliability of the global decisions, the total sensing

error rate is defined as the summation of the global false alarm and misdetection probabilities.

The total sensing error rate is plotted in Figure 3.6 for three di↵erent cluster sizes (5, 10, 15),

with eight di↵erent path error sets, where each of the error set is randomly selected between

10�4 to 0.3. The optimal voting rule is shown in the legend for each line and cluster size. As

it can be seen in Figure 3.6, majority voting rule is the optimal case which is also shown to

be the most energy e�cient voting rule in upcoming results. Its energy e�ciency is intuitive

since in a non-optimal voting rule selection SUs have to have more accurate local results to

compensate the non-optimality of the voting rule to achieve target global detection and false

alarm rates. Thus, this directly increases the number of samples and expended energy for the

sensing.

Next, the e↵ect of the voting rule and the imperfect reporting is analyzed in terms of

the required additional energy cost to the ideal case. For a cluster size of N = 5, Figure

3.7 depicts the energy loss induced from the non-ideality of the HDF-based CSS for di↵erent

voting rules K = 1, . . . , 5 with respect to average BEP of the single hop reporting case. It is

important to remind that SUs experience di↵erent channel sensing quality of the target PC,

so that, SNRs and autocorrelation coe�cients of SUs are not identical. In this respect, there

are two sets of voting rule results in Figure 3.7, one for traditional K-out of-N rule using the



www.manaraa.com

54

Binomial distribution, and another for the proposed K-out of-N using the Poisson-Binomial

distribution. It can clearly be seen that the proposed method which takes the sensing quality

heterogeneity of the SUs into account outperforms the traditional one in terms of the energy

loss. The results also show that the majority voting is the most energy e�cient voting scheme

under the two cases.
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Figure 3.7: Comparison of energy loss caused from traditional and proposed HDF-based
schemes using singlehop reporting.

The e↵ect of the reporting error on the energy loss for both cases can also be observed from

Figure 3.7. For K = 3, for example, energy loss of traditional approach is not a↵ected by BEP

until 10�3, then, it starts to increase as the BEP increases. After a point, around 0.1, energy

loss goes to infinity, which is known as the BEP wall and its existence has been shown first

in [86] for SNR loss under the traditional K-out of-N fusion rule. The majority voting rule

also gives the best performance in terms of the robustness against the BEP wall compared to

the other voting rules. In addition to energy e�ciency, the proposed Poisson-Binomial based

approach exhibits a more stable performance against the BEP wall since it is not a↵ected by

the BEP increase up to 0.05.
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Figure 3.8: Comparison of energy loss caused from traditional and proposed HDF-based
schemes using proposed multihop reporting and CH selection method.

Likewise, Figure 3.8 shows the performance of the traditional and proposed methods using

multihop reporting and the best CH selection algorithm given in Section 3.3. It is obvious that

the proposed method increases the robustness of the energy loss against the BEP wall e↵ect

by about an order of magnitude, where the BEP wall is located at 0.5.

3.5.3 CSS with Soft Decision Fusion

For a cluster size of 5, Figure 3.9 depicts the energy loss induced from the non-ideality

of the quantized SDF with respect to the average BEP of the single hop reporting case. To

put an evident comparison between hard and soft decision fusion, the best case of the HDF is

also plotted. For the quantized SDF, there are two di↵erent sets of results: one for the FSST

approach, and another for the WSST where sensing duration of SUs are weighted based on

their sensing quality metrics. The single bit LM quantizer’s FSST energy loss performance

is shown to be superior to the best case HDF. On the other hand, single bit WSST gives a

better energy e�ciency than the 4� bit FSST scheme. Similar to Figure 3.8, the benefit of the
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proposed multihop reporting based CH is apparent in terms of the BEP wall in Figure 3.10

where the BEP wall is located at 0.5.
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Figure 3.9: Comparison of energy loss caused from traditional and proposed quantized
SDF-based schemes using singlehop reporting.

3.5.4 Multi-Objective Clustering Optimization

3.5.4.1 MOCO with a Coarse Micro Perspective

To begin with, MOCO is first addressed using a coarse micro perspective where each SU

is enforced to have a local detection and false alarm probabilities 0.9 and 0.1, respectively. As

shown in Figure 3.5, coarse approach simply neglects the heterogeneity of SUs sensing quality

by enforcing each of them to have identical local detector performance. However, it still takes

care of the proposed multihop reporting and the best CH selection presented in Section 3.3 and

employs the Poisson-Binomial distributions to handle the non-identical reports of SUs due to

di↵erent reporting errors. Indeed, this was the first attempt to solve MOCO problem [78] and

the micro perspective has been kept simple to examine the macro perspective and multihop

reporting more in depth.
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Figure 3.10: Comparison of energy loss caused from traditional and proposed quantized
SDF-based schemes using proposed multihop reporting and CH selection method.
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Figure 3.11: MOCO Results for coarse micro perspective.
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For simulation results, the CRN shown in Figure ?? is considered where SUs are randomly

distributed over an area of 2 km⇥2 km. Without loss of generality, PUs are located in certain

positions for simulation and demonstration easiness as in Figure 3.12. For the local detectors,

the energy detector is adopted for simplicity using the equations (2.6) and (2.9) for false alarm

and detection probabilities, respectively. Throughout the simulation, the values in Table 3.2 in

[78] are employed, unless it is explicitly stated otherwise. Since the coarse micro perspective

focuses on hard decision fusion, reporting energy cost is neglected in the fitness functions.

Accordingly, the results for MOCO objective values and clustering topology of the network

using NSGA-II are shown in Figure 3.11 and Figure 3.12, respectively. Colorbar of Figure 3.11

ranges from 1 to 50 represents the populations of the final generation.

Figure 3.12: Clustered network topology based on results in Figure 3.11. Numbers next to
the SUs show the SNR values of SUs for the PU 1. SUs selected to a cluster have a diamond
shape with the color of the PU which is sensed by the cluster. The cluster heads of clusters

are shown in hexagonal shapes.

In Figure 3.12, the amoeba-like shapes with opaque colors represent the clusters where

square shape represents the PU with the number inside, diamond shapes represent cluster
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members along with SNR values in dB units, and hexagon shapes represent CHs selected by

the technique proposed in this paper. There is no need to compare the coarse and the proposed

micro perspectives since it is obvious that the proposed one handle the heterogeneity in a more

sophisticated and e�cient way as it can be seen from Figure 3.5.
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Figure 3.13: MOCO results for F and H
1

for di↵erent CSS schemes.

3.5.4.2 MOCO with Proposed Micro Perspective

For the population and generation sizes given in Table 3.2, the results for MOCO objective

values of the network using NSGA-II are shown in Figure 3.13 and 3.14. Figure 3.13 presents the

intra-cluster total energy consumption (F
1

-F
4

) and the inter-cluster objectiveH
1

with respect to

di↵erent types of HDF and SDF based CSS schemes. The pattern in previous comparison among

CSS schemes is also observed Figure in 3.13 where the z�axis is logarithmically scaled. Figure

3.14 shows the intra-cluster achievable throughput (G
1

-G
4

) and the inter-cluster objective H
2

with respect to di↵erent types of HDF and SDF based CSS schemes. Again, z � axis is

logarithmically scaled and observed relations are parallel to the pattern in Figure 3.13.
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Figure 3.14: MOCO results for G and H
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for di↵erent CSS schemes.

3.6 Chapter Summary

In this chapter, energy and throughput e�cient clustering is studied from the micro and

macro perspectives. Using the multihop diversity, a procedure is developed to find the best

CH and optimal routing paths from SUs to CH, which is shown to be better in terms of the

robustness to the reporting channel imperfection and energy cost. Results showed that the

proposed multihop reporting and CH selection procedure mitigate the BEP wall phenomenon.

From the micro perspective, it has been revealed that consideration of the sensing and reporting

heterogeneity under both HDF and SDF based CSS has a significant impact on the intra-cluster

energy consumption and achievable throughput. The proposed novel HDF scheme tended to

enforce SUs with relatively high SNRs to have a perfect local detection performance while the

low SNR SUs’ local detection is released. On the other hand, the proposed WSST method,

which decides on SUs’ sample sizes proportional to their SNRs, was shown to have a much

more energy e�cient performance than the well known FSST for SDF schemes. For the macro
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perspective, on the other hand, the MOCO problem is formulted and solved using NSGA-II to

obtain network wide fair energy and throughput e�cient partitioning of SUs.



www.manaraa.com

62

CHAPTER 4. ENERGY & SPECTRUM EFFICIENT CSS

SCHEDULING

4.1 Overview

Although clusters are formed for each PC without any exemption in Chapter 3, such an

approach may not be both spectrum and energy e�cient since some PCs may require extensively

large amounts of sensing energy even if they provide poor quality of service due to their low

apriori probability of being idle. In such a case, an optimal energy and spectrum e�cient system

may rather not sense that PC. Furthermore, MOCO obligates SU to have the association with

only one cluster or PC at a time. However, if SUs have desirable sensing qualities on several

PCs, assigning them to sense more than one channel might be more spectrum e�cient since

the secondary network naturally seek to discover as much as possible free bands. At this stage,

channel switching delay and energy overhead should be considered in energy and throughput

e�ciency calculations since an SU need to reconfigure its radio parameters to execute sensing in

a particular PC. Consequently, an energy and spectrum e�cient cooperative spectrum sensing

and scheduling scheme which minimizes the total energy consumption induced from sensing,

reporting and switching operations per obtained data rate leads to a combinatorial problem

due to the inextricably intertwined binary variables for channel scheduling and SU association.

Moreover, enforcing the clusters to meet certain collision and spectrum utilization constraints

will put a non-linear domain since one needs to find the optimal sensing duration and local

detection threshold of each sensing SU on its assigned PCs.
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4.1.1 Chapter Contributions and Novelty

To address the above problems, the energy and spectrum e�ciency is coupled as a single

objective such that the energy spent per achieved data rate is minimized subject to global

detection and false alarm constraints to protect PUs from SU interference and ensure a certain

spectrum utilization, respectively. Accordingly, assuming SUs have di↵erent reporting error

rates for di↵erent PCs, CSS scheduling (CSSS) is formulated as an MINLP problem to deter-

mine: 1) the optimal subset of PCs to be scheduled for sensing, 2) the SU assignment set for

each scheduled PC, and 3) sensing durations and detection thresholds of each SU on PCs it is

assigned to sense. Moreover, we formulate the optimal sensing order to minimize the channel

switching latency which is modeled as a linear function of the total frequency distance [21]-[22].

For specific instances of above combinatorial problem, ie. for a given set of scheduled PCs

and set of SU assignment for ach scheduled PC, CSSS is first shown to be a non-convex prob-

lem. Accordingly, an equivalent convex framework is developed for heterogeneous CRNs using

the monotonicity of the objective and log-concavity of the global collision and spectrum uti-

lization constraints. For comparison, optimal detection and sensing thresholds are also derived

assuming SUs have identical sensing qualities as a suboptimal solution to the heterogeneous

case. Exploiting the established convex framework, we develop a prioritized ordering heuristic

(POH) to order channels under spectrum, energy and spectrum-energy limited regimes. After

that, a scheduling and assignment heuristic (SAH) is proposed and shown to have a very close

performance to exhaustive optimal solution. The behavior of the CRN is then studied under

these regimes with respect to various numbers of SUs, PCs and SNR distributions.

4.1.2 Chapter Organization

The rest of this chapter is organized as follows: First, Section-4.3 introduces the system

model. Then, Section 4.4 provides the details of CSS under heterogeneity and homogeneity

modes. After that, Section 4.5 derives the coupled energy & spectrum e�ciency and formulates

the CSSS problem. Section 4.6 develops the POH and SAH solution approaches. Finally,



www.manaraa.com

64

simulation results and analysis are presented in Section-4.7 and Section-4.8 summarizes the

chapter.

4.2 Related Work

Zhang and Tsang proves the energy e�ciency optimality of the myopic policy using the

framework of partially observable markov decision process (POMDP) in [87]. By successively

activating a subset of sensors to sense and putting others into a sleep mode, an energy e�cient

CSS with an optimal scheduling method is considered for sensor aided CRNs [68]. Sun et al.

considers a heterogeneous CRN scenario and develop a CSSS framework using discrete-convex

in three steps. They simply use OR voting rule in their analysis to maximize a utility function

as a weighted sum of capacity and energy expenditure [88]. Eryigit and others try to minimize

total sensing and reporting energy consumption using OR voting rule in a error-free cooperation

environment. They provide e�cient heuristic methods after solving the combinatorial problem

via outer linearization methods [89]. Even though all these previous studies have important

contributions, they lack for generality of exploitation di↵erent voting rules and energy e�ciency

by assuming AND/OR voting rule for the sake of tractability since the majority voting rule is

already pointed out to be the most energy e�cient voting rule in the context of additional SNR

requirement [13]. This is recently re-validated by [90] where authors use discrete-convexity tools

to maximize the achievable throughput in both homogeneous and heterogeneous scenarios. An-

other shortcoming of the works in [87]-[90] is assumption of the perfect reporting environment.

However, Chaudhari et al. clearly demonstrated the existence of a reporting error wall after

which no reliable cooperation is possible regardless of how much energy spent [13], [91].

Another practical concern in multi-channel CSSS is channel switching delay and energy

which is also disregarded in the previous works. In [21] and [22] channel switching factor is

taken into account in the realm of resource allocation scheduling. In [92], authors propose a

scheduling method which minimizes the energy cost caused by sensing, reporting and channel

switching actions under the assumption that number of SUs is much more than the number of

PUs employing the OR fusion rule under perfect reporting channel. Authors of [93] propose
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a framework to minimize the ratio of summary of sensing-reporting-switching cost and the

discovered spectrum under erroneous reporting and generalized voting rules.

4.3 System Model

We consider a large scale CRN scenario where the sensing scheduling of PCs and the as-

signment of SUs to sense scheduled PCs are determined by a central cognitive base station

(CBS). The number of PCs and SUs are denoted by M and N , respectively. Similarly, the

set of scheduled PCs and the set of assigned SUs are denoted as M and N , respectively. The

subset of N assigned to sense the same PC is referred to as a cluster and SUs can join more

than one cluster at a time. We assume that the CBS has the information about the sensing

and reporting quality of SUs and chooses a CH, which undertakes the role of fusion center, for

each scheduled PC among the SUs assigned to sense that channel. After the determination of

CHs and routing paths, report and control signaling between the SUs and CBS are exchanged

over a CCC via the CHs. Timeslotted operation of the secondary network is depicted in Figure

4.1 where each timeslot of duration T is split into two stages: 1) channel search to discover

spectrum holes and 2) channel utilization for secondary data transmission. We assume that

sensing and reporting channel conditions does not change during a timeslot duration.

Figure 4.1: Demonstration of a scheduling timeslot consisting of switching-sensing-reporting
cycles and secondary data transmission.
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In the channel search stage, channel searching proceeds in switching-sensing-reporting cycles

where an SU n first performs channel switching to adjust its operating frequency to the assigned

PC m, then executes sensing for a required duration and finally reports its local decision to

the CH over a multihop reporting path to receive a global decision feedback regarding the PC

state. Accordingly, the channel search time of SU n, Tn
s , is determined by the summation

of sensing cycles of all assigned PCs. We note that the duration of the channel search stage,

thus the residual time for the channel utilization, is determined by the slowest SU since the

CBS needs to wait for the arrival of all decisions to feedback the global decisions and resource

allocation policy which is beyond the scope of this chapter. Therefore, channel search duration

is given by

Ts = max
n2N

(Tn
s ) (4.1)

In the channel utilization stage, based on the global decision feedback received from the FCs,

discovered available channels are utilized by SUs in the remaining available time, T � Ts,

according to a certain resource sharing strategy. If an SU completes all necessary cycles before

Ts, it puts itself into a sleep mode to save energy until it is allowed to utilize the discovered

channels. For the remainder of the chapter, we define the following matrices and vectors to

formulate the scheduling problem in a more compact way:

• y 2 {0, 1}M is a vector of binary variables ym which indicates that the PC m is scheduled

to be sensed or not.

• X 2 {0, 1}M⇥N is a binary PU$SU assignment matrix with entries xnm 2 {0, 1} which

indicates that the SU n is committed to sense the PC m if it is non-zero.

• S 2 N+

M⇥N

is a positive real matrix with entries Sn
m which defines the number of samples

of the SU n on the PC m.

• E 2 RM⇥N is a real matrix with entries "nm which defines the detection threshold of the

SU n on PC m.

• � 2 R+

M⇥N

is a positive real matrix with entries �nm which represents the SNR of the SU

n on the PC m.
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• P 2 RM⇥N is the reporting bit error probability matrix with entries pnm 2 [0, 1] which

represents the reporting error between SU n and CH m.

• f 2 R+

M

is a vector with entries f c
m which represents the carrier frequency of the PC m.

4.4 CSS model

4.4.1 Heterogeneous Mode

Since the focus of this chapter is the scheduling aspects of the CSS, a generic sensing method

like energy detection is adequate for this purpose. EDs have been extensively exploited as the

ubiquitous sensing technique in the literature due to its simplicity, compatibility with any

signal type, and low computational and implementation complexity [24]. To detect primary

signals, ED of SU n 2 N measures the received signal energy of PC m 2M for a number of

samples Sn
m and compares it with a detection threshold "nm to make a local decision on binary

hypotheses H0

m and H1

m which represents the absence and presence of PUs, respectively. For a

large enough number of samples (Sn
m � 30) and normalized noise variance, probability of false

alarm, P f
m,n = P[H

1

|H
0

], and probability of detection, P d
m,n = P[H

1

|H
1

], are given by (2.9)

and (2.10), respectively.

After the local sensing process, SU n sends its hard result unm to the CH over a binary sym-

metric CCC. Defining the error probability as pnm = P [ũnm = 1|unm = 0] = P [ũnm = 0|unm = 1]

where ũnm is the hard decision received by the CH, the local false alarm and detection proba-

bilities received at the CH side are given by

P̃ f
m,n

⇣

P f
m,n

⌘

= P [ũnm = 1|unm = 0]P
⇥

unm = 0|H0

m

⇤

+ P [ũnm = 1|unm = 1]P
⇥

unm = 1|H0

m

⇤

= pnm

⇣

1� P f
m,n

⌘

+ (1� pnm)P f
m,n (4.2)

P̃ d
m,n

⇣

P d
m,n

⌘

= P [ũnm = 1|unm = 0]P
⇥

unm = 0|H1

m

⇤

+ P [ũnm = 1|unm = 1]P
⇥

unm = 1|H1

m

⇤

= pnm

⇣

1� P d
m,n

⌘

+ (1� pnm)P d
m,n (4.3)
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Denoting the set of cooperating SUs to sense the PC m as Cm with the cardinality Cm =
P

n2N xnm, the CH collects ũnm’s and makes the global decision using the following test

Km =
X

n2C
m

ũnmxnm

H1
m

R
H0

m

m (4.4)

which follows the Poisson-Binomial distribution. Using equations (4.2) and (4.3) in Poisson-

Binomial distribution, the CH obtains the global false alarm and detection probabilities by

fusing the local reports as follows

Qf
m

⇣

P̃ f
m,n

⌘

= P
⇥

Km � m | H0

m

⇤

=
C

m

X


m

X

A2F


Y

n2A
P̃ f
m,n

Y

n2Ac

⇣

1� P̃ f
m,n

⌘

(4.5)

Qd
m

⇣

P̃ d
m,n

⌘

= P
⇥

Km � m | H1

m

⇤

=
C

m

X


m

X

A2F


m

Y

n2A
P̃ d
m,n

Y

n2Ac

⇣

1� P̃ d
m,n

⌘

(4.6)

where F
m

is the set of all subsets of m integers that can be selected from Cm. Since F
m

has
�C

m


m

�

elements, using an e�cient method to calculate Eq. (4.5) and (4.6) is very important,

especially when Cm is very large. For this purpose, probability mass function (pmf) and

cumulative distribution function of Poisson-Binomial random variables can be expeditiously

calculated from polynomial coe�cients of the probability generating function of Km [80].

4.4.2 Homogeneous Mode

In the heterogeneous mode, SUs with di↵erent sensing qualities are treated distinctly and

allowed to contribute to Qf
m and Qd

m with di↵erent P̃ f
m,n and P̃ d

m,n, respectively. As a special

and traditional case, homogeneous mode imposes SUs to satisfy P̃ f
m,n = P̃ f

m, P̃ d
m,n = P̃ d

m, 8n

regardless of their non-identical SNRs. Accordingly, Km is Binomially distributed since ũnm is

a Bernoulli random variable in this mode.

4.5 CSS Scheduling Optimization

The ultimate design goal of an energy and spectrum e�cient CSS scheduling scheme would

be minimizing the energy expenditure per transmitted bit, i.e, [Joules/bit]. On the one hand,
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such a purpose requires minimization of the opportunity cost via joint optimization of SU as-

signment along with the determination of sensing durations and detection thresholds with the

consideration of distinctive sensing and reporting qualities of SUs subject to collision constraint

regulations. On the other hand, it necessitates the optimal selection of PCs to maximize the

achievable total throughput by maximizing the achievable data rate by scheduling PCs with

higher possibility of being idle and maximizing the available time left for secondary transmis-

sion, T � Ts.

4.5.1 Energy and Spectrum E�ciency

Energy and spectrum e�ciency of the CSS scheduling problem can be coupled into a single

objective by minimizing the energy cost per obtained opportunity which can be formulated as

the number of bits transmitted on discovered free PCs. Denoting the apriori probability of idle

and busy states of the PC m as ⇡0

m = P
⇥

H0

m

⇤

and ⇡1

m = P
⇥

H1

m

⇤

, respectively, the achievable

data rate for a normalized noise power is given by

R =
T � Ts

T

X

m2M
⇡0

m

⇣

1�Qf
m

⌘

Wmym log
2

(1 + Pt) (4.7)

where Wm and Pt denote the bandwidth of the mth PC and the transmission power of the SUs,

respectively. The opportunity cost is primarily induced from three factors: channel switching

cost, sensing cost, and reporting cost.

4.5.1.1 Channel Switching Energy

To execute sensing assignments, SUs have to switch its operating frequency to desired

channel’s parameters in the beginning of corresponding cycles. We assume that the switching

time satisfies the triangularity and linearity properties, i.e., ⌧sw = �|f c
m�1

� f c
m| where � is a

switching factor that depends on parameters such as power consumption and used technology

[21]-[22]. Based on the initial channel state, ordering the assigned PCs and starting to sense

from the closest channel is the optimal policy as it is the shortest path. For instance, if we

denote the initial channel state as f c
0

, the lowest/highest central frequency of assigned channels
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as f c
low/f

c
high, the absolute amount of switched frequency can be minimized by first tuning to

the closest PC f c
low (f c

high) and then starting to sense channels in ascending (descending) order.

To calculate the total switching time of the SU n, we define the following vectors: the initial

channel state of SU n, x0
n 2 {0, 1}M with zero entries except at the intitial frequency, the nth

column vector of X, xn, fn = xn � f , and f0
n = x0

n � f where (�) denotes the Schur product.

Accordingly, the total channel switching time of SU n overall cycles can be given by (4.8)

Tn
sw = � ⇥

⇥

max (fn)�min (fn) + min
�

�

�max (fn)�max
�

f0
n

�

�

� ,
�

�min (fn)�max
�

f0
n

�

�

�

 ⇤

(4.8)

Therefore, the total switching energy expenditure is given by

ESW = PswTsw = Psw

X

n2N
Tn
sw (4.9)

where Psw and Tsw denote the channel switching power and total channel switching time,

respectively.

4.5.1.2 Sensing Energy

Denoting the time spent per sample as ⌧s, the total energy expenditure for the sensing is

given by

ES = PsTsns = Ps⌧se
T (S �X) ẽ (4.10)

where Ps is the sensing power and Tsns is the total sensing duration of SUs. In (4.10), e and

ẽ are unit vectors with sizes M and N , respectively.

4.5.1.3 Reporting/Controlling Energy

Similarly, denoting the time spent for reporting as ⌧r, the total energy expenditure for the

reporting is given by

ER = PrTr = Pr⌧r eTXẽ (4.11)

where Pr is the reporting power and Tr is the total reporting/controlling duration of SUs.

Hence, the accumulated energy consumption within the channel search stage due to these

three factors is given as

E = ESW + ES + ER (4.12)
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Coupling the obtained opportunity and its cost, the objective of the entire scheduling frame

work can be given as

⌘ (y,X,S) =
E

R
[Joules/bit/s] (4.13)

4.5.2 Problem Formulation

We formulate the optimal CSS scheduling problem which will be exploited as a benchmark

for the performance of the proposed heuristic methods as follows

P 4.1 : CSSS

min
y,X,S,E

⌘ = E/R

1: s.t. Q̄d
th  Qd

m

⇣

P̃ d
m,n

⌘

, 8m 2 {m| 1  ym}

2: Qf
m

⇣

P̃ f
m,n

⌘

 Q̄f
th, 8m 2 {m| 1  ym}

3: xnm  ym, 8m; 8n

4: �ym 
X

n

xnm, 8m

5: 30  Sn
m  S̄, 8(m,n) 2 {m,n| 1  ym, 1  xnm}

6: 0  T � Ts

7: xnm, ym 2 {0, 1} , Sn
m 2 N+, "nm 2 R, 8m; 8n

which is an MINLP problem whose mixed-integer nature is due to the variables y, X and S.

Lines 1 and 2 of the CSSS are the collision and spectrum utilization constraints, respectively.

Line 3 simply states that if the PC m is not scheduled to be sensed then any SU cannot be

assigned to sense the PC m. Line 4, on the other hand, requires the cooperation of at least

� SUs if the PC m is scheduled to be sensed. If an SU is assigned to sense any channel, line

5 sets the lower bound of 30 on required number of samples to invoke the CLT to ensure

the assumptions hold for (2.9) and (2.10) and sets the upper bound S̄ = T/⌧s which is the

maximum number samples possible within a timeslot duration, T . Line 6 simply limits the

searching stage duration Ts to the timeslot duration T . Finally, line 7 defines the domain of

the optimization variables.



www.manaraa.com

72

It is a practical approach to relax the problem by unintegerizing S. After obtaining the

optimal real valued solution, one can obtain the closest upper integer value, which does not

negatively e↵ect the system performance since Sn
m >> 1 and ⌧s << 1 in general. However,

CSSS is still an MINLP problem due to y and X and it requires impractical time complexity

even for moderate size of problems. Thus, developing fast and high-performance heuristics

are necessary to achieve satisfactory sub-optimal results for practical purposes. In this regard,

we will focus on CSSS for a given pair of y and X, (ȳ, X̄), and refer this subproblem to as

CSSS(ȳ, X̄) in the remaining part of the chapter. In other words, CSSS(ȳ, X̄) is a single

instant of all possible combinations and it is shown to be a non-convex problem in Lemma

4.1. Exploiting the convex composition rules given in Remark 4.1, the log-concavity of the

Poisson-Binomial distributions and monotonicity of ⌘, the CSSS(ȳ, X̄) can be converted into

an equivalent convex feasibility problem to develop heuristic solutions in the next section. In

what follows, Lemmas 4.2 and 4.3 are first introduced to show the monotonicity and decoupled

convexity of the reported local false alarm and detection probabilities under the assumption

of P f
m,n  0.5 and P d

m,n � 0.5. Using the log-concavity of Poisson-Binomial distribution in

Appendix A.1.2, log(Qf
m) and log(Qd

m) can be shown as concave functions. Moreover, taking

the monotonicity of ⌘ in Lemma 4.4 into consideration, Corollary 4.1 states that the optimal

value of ⌘ will be attained at Qf
m = Qf

th and Qf
d = Qd

th.

Lemma 4.1: P f
m,n

�

P d
m,n

�

is neither convex nor concave function of (Sn
m, "nm), and neither is

Qf
m
�

Qd
m

�

. Hence, CSSS(ȳ, X̄) is not a convex problem.

Proof. Please see Appendix B.1.

Remark 4.1: For functions b : RL ! R, c : RK ! RL, a = b � c : RK ! R is defined by

a(z) = b(c(z)) = b(c
1

(z), . . . , ck(z), . . . , cK(z)) for z 2 RK [34].

1. a is convex if b is convex and non-increasing in each argument, and ci is concave in z,

8k.

2. a is concave if b is concave and non-increasing in each argument, and ci is convex in z,

8k.
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Lemma 4.2: Assuming that P f
m,n (g(Sn

m, "nm))  0.5, P d
m,n (h(S

n
m, "nm, �nm)) � 0.5, 8m,n,

1. For a feasible Sn
m, S̄n

m, g and h are both increasing and linear functions of "nm. Thus,

P f
m,n(g)

�

P d
m,n(h)

�

is a decreasing convex (concave) function of "nm.

2. For a feasible "nm, "̄nm, g (h) is an increasing (decreasing) concave (convex) function of

Sn
m. Thus, P f

m,n(g)
�

P d
m,n(h)

�

is a decreasing (increasing) convex (concave) function of

Sn
m.

Proof. Please see Appendix B.1.

Lemma 4.3: Monotonicity and parameterized convexity (concavity) of P f
m,n (P d

m,n) also holds

for the reported false alarm and detection probabilities P̃ f
m,n (P̃ d

m,n).

Proof. Please see Appendix B.1.

Lemma 4.4: ⌘ is a monotonically increasing function of the number of samples, Sn
m, 8m,n.

It is also a quasi-convex function of (Sn
m), 8m,n.

Proof. Please see Appendix B.2.

Corollary 4.1: For a feasible detection threshold "̄nm and increasing Sn
m, while P f

m,n and Qf
m

decrease, P d
m,n, Q

d
m, and ⌘ increase. In this case, the minimum ⌘ that satisfies the constraint

Qd
m � Qd

m is attained at Sn
m which satisfies Qd

m = Qd
m. For a given S̄n

m and decreasing "nm,

on the other hand, P d
m,n, Q

d
m, P f

m,n, and Qf
m increase, which is upper-bounded by Qf

m  Qf
m.

Thus, the optimal value of "nm is attained at Qf
m = Qf

m.

Since each cluster m is separately required to satisfy global detection and false alarm re-

quirements to achieve the optimal objective, ⌘?(ȳ, X̄,S), Corollary 4.1 decouples (Sn
m, "nm) from

(Sn
m0 , "nm0), 8m0 6= m, 8n. Consequently, exploiting the parameterized convexity of the problem

and the log-concavity of the Poisson-Binomial distribution (also the Binomial distribution as a
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special case), CSSS(ȳ, X̄) can equivalently be written as a convex problem as follows:

P 4.2: min
S

m

,Em

�

�

�

log
⇣

Qf
th

⌘

� log
⇣

Qf
m

⇣

P f
m,n

⌘⌘

�

�

�

1: s.t. log
⇣

Qd
th

⌘

 log
⇣

Qd
m

⇣

P d
m,n

⌘⌘

2: 1  "nm  �nm + 1, 8n

3: 30  Sn
m  S̄, 8n

4: 0  T � Ts

5: Sn
m 2 R+, "nm 2 R, 8n

where Sm and Em are the mth row vectors of S and E , respectively. Line 2 ensures that

P f
m,n  0.5, P d

m,n � 0.5, 8m,n. Quasi-convexity of the objective follows from Corollary 1 and

P2 can be solved using primal decomposition methods [94].

Under the homogeneous CSS mode, SUs are enforced to provide identical local false alarm

and detection probability reports, i.e. P̃ f
m,n = P̃f and P̃ d

m,n = P̃d. In such a case, there is no

need to solve P2 numerically since distinguishing sensing durations and detection thresholds

of each SU is unnecessary. Therefore, Qf
m (Qd

m) directly becomes a function of P̃f (P̃d) whose

optimal value, P̃ ?
f = {P̃f | Qf

m = Qf
th}

⇣

P̃ ?
d = {P̃d | Qd

m = Qd
th}
⌘

could simply be computed

using the bisection method. We note that there is also a close relationship between the cluster

size and P̃ ?
f (P̃ ?

d ) such that as the cluster size increases P̃ ?
f (P̃ ?

d ) increases (decreases), which

is quite intuitive since as the number of cooperating SUs increases local detector accuracy

burden on SUs decreases. Accordingly, one can calculate P̃ ?
f (P̃ ?

d ) for di↵erent sizes of clusters

o✏ine and determine the exact local detection requirements depending upon the given cluster

formation by (ȳ, X̄) and the reporting channel quality as follows

P f?

m,n =
P ?
f � pnm

1� 2pnm
(4.14)

P d?
m,n =

P ?
d � pnm

1� 2pnm
(4.15)

which follows from (4.2) and (4.3) with the assumption of pnm < 0.5, 8m,n. Indeed, pnm ' 0.5

has already been shown to be the imperfect reporting error wall beyond of which the reliable

CSS is not possible no matter how much energy is spent [91]. Moreover, substituting (4.14) and



www.manaraa.com

75

(4.15) into (2.9) and (2.10), respectively, optimal number of samples and detection thresholds

are derived as

S?
m,n =

2

4

Q�1

�

P d?
m,n

�p
2�nm + 1�Q�1

⇣

P f?

m,n

⌘

�nm

3

5

2

(4.16)

"?m,n = 1 +
Q�1

⇣

P f?

m,n

⌘

p

S?
m,n

(4.17)

4.6 Energy & Spectrum E�cient Heuristics

In this section, we will develop fast, yet high performance heuristic solutions to alleviate the

combinatorial nature of the CSSS problem by employing the proposed CSSS(ȳ, X̄) approaches.

Although a coupled energy and spectrum e�ciency metric is focused in the previous section,

we will explore di↵erent scenarios to develop e↵ective heuristics with regard to various network

conditions. For instance, in a network scenario with heavy tra�c conditions, SUs may demand

for as much as possible throughput gain, which will be referred to as spectrum limited regime.

On the contrary, SUs may not have enough energy resources and prefer to minimize their energy

consumption to save remaining battery life for future bursty tra�c conditions, which will be

referred to as energy limited regime. Therefore, we will investigate three di↵erent regimes:

1. Spectrum limited regime (SLR): Maximization of the achievable total data rate by schedul-

ing PCs regardless of the opportunity cost.

2. Energy limited regime (ELR): Minimization of the total energy consumption by assigning

SUs regardless of the achievable data rate.

3. Energy & spectrum limited regime (ESLR) : Minimization of the coupled energy and

spectrum e�ciency as formulated in (4.13).

Fortunately, the convexity analysis in the Section 4.5 still applies to minimize E since it is

a linear and increasing function of Sn
m. Similarly, maximizing R is equivalent to minimizing

Ts which has already been shown to be a monotonically increasing convex function of Sn
m in

Appendix B.2.
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4.6.1 Prioritized Ordering Heuristic

We first begin with a channel ordering heuristic (POH) which prioritize channels according

to the regime types as shown in Algorithm 4.1. POH provides us with an optimistic channel pri-

oritization such that how solely scheduling a single primarily channel can perform if we greedily

assign the best � SUs to it. For every channel m, Algorithm 4.1 first orders SUs with respect

to their SNR values on PC m and record this sorting as �̄m for future purposes. Thereafter, it

forms ȳ with zero entries except at the mth position and X̄ with zero entries except the first �

SUs of �̄m. Based on the heterogeneity or homogeneity mode preference, performance metrics

of channel m, h⌘m, Em, Rmi, is calculated using P2 and (4.16), respectively. Finally, channels

are sorted with respect to R, E and ⌘ under the SLR, ELR and ESLR, respectively.

Algorithm 4.1 POH

Input: P , �, �
Output: Prioritized channel vectors and descending sorted �
1: for m = 1 to M do
2: �̄m  Sort SUs in descending order wrt. �nm
3: ȳ  Schedule only channel m to be sensed
4: X̄  Assign the best � SUs to channel m from �̄m.
5: if Mode = Heterogeneous then
6: Compute h⌘m, Em, Rmi using P2(ȳ,X̄)
7: else
8: Compute h⌘m, Em, Rmi using (4.16) for given (ȳ,X̄)
9: end if

10: end for
11: �̄  Form ordered � from �̄ms.
12: cR  Sort channels in descending order wrt. Rm.
13: cE  Sort channels in ascending order wrt. Em.
14: c⌘  Sort channels in ascending order wrt. ⌘m.
15: return c⌘, cE , cR, �̄.

One of the key features of the proposed heuristic is the assignment of exactly � SUs which is

the minimum requirement for the cluster size. The underlying reason is that the total number

of samples to meet the global detection and false alarm probabilities increases as the cluster size

increases even if the required individual number of samples decreases because of the increase

(decrease) in P̃ ?
f (P̃ ?

d ) by adding one more SU. Although it is not trivial to show this behavior

analytically due to the lack of closed form Q-function expression, variations in total number
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of samples, P̃ ?
f , and P̃ ?

d are numerically evaluated in Section 3.5. Likewise, reporting and

switching energy consumption also increase with the cluster size since the number of reports

and possible channel switching may occur with additional SUs.

While the outer loop takes O (M) steps, sorting operations in Line2 and Lines 12-14 are

O (N logN) and O (M logM), respectively. The computation of performance metrics between

lines 5-9 takes O (MN) steps at the worst case. Therefore, overall complexity of POH is

O (MN logN).

4.6.2 Scheduling and Assignment Heuristic

Algorithm 4.2 SAH

Input: P , �̄, �, c⌘/cE/cR
Output: The best solution with the corresponding ȳ and X̄.
1: �  0
2: i  1
3: ⌘

0

 1 / E
0

 1 / R
0

 �1
4: S?  h⌘

0

, E
0

, R
0

i
5: while �  0 && i M do
6: ȳ  Schedule the best i channels in c⌘ / cE / cR
7: X̄  Assign the best � SUs to channels from �̄.
8: if Mode = Heterogeneous then
9: S  Compute h⌘i, Ei, Rii by P2

10: �  (⌘i � ⌘i�1

) / (Ei � Ei�1

) / (Ri�1

�Ri)
11: if �  0 then
12: S?  h⌘i, Ei, Rii
13: end if
14: else
15: S  Compute h⌘i, Ei, Rii by (4.16)
16: �  (⌘i � ⌘i�1

) / (Ei � Ei�1

) / (Ri�1

�Ri)
17: if �  0 then
18: S?  h⌘i, Ei, Rii
19: end if
20: end if
21: i  i+ 1
22: end while
23: return S?, ȳ, X̄

Exploiting the POH outputs and following the initialization process, scheduling and assign-

ment heuristic (SAH) schedules the first i channels from cR / c⌘ / cE under the SLR / ELR /
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ESLR, and greedily assigns the best � SUs from �̄. Afterwards, based on the heterogeneity or

homogeneity mode preference, h⌘m, Em, Rmi is calculated using P2 and (4.16), respectively.

Employing the shift between the consecutive iterations, �, the algorithm determines if there is

a decrease (increase) in ⌘ and E (R) by scheduling ith PC from the prioritized channel vector

and updates the best solution space. The termination condition of the while loop is satisfied

either there is no performance enhancement by the addition of the ith PC or there is no PC

left to schedule. In the SLR, SAH will run at most M iterations since it seeks for as much as

possible data rate without concerning about the opportunity cost. In the ELR, on the other

hand, SAH will schedule the most energy e�cient channel and terminate since scheduling more

channels will increase the opportunity cost. Finally, SAH will schedule as many PCs as possible

as long as the energy e�ciency does not increase. That is, it will also operate for M iterations

in the worst case. Thus, while the time complexity under the ELR is constant, that under

other regimes is O(M).

4.7 Results and Analysis

All simulation results were obtained and plotted using Matlab. Throughout the simulation,

the values in Table 4.1 are employed, unless it is explicitly stated otherwise.

Table 4.1: Default parameters used for obtaining results

Par. Value Par. Value Par. Value

Ps 1 W [89], [92] ⌧s 1 µs Qf
th 0.01

Px 1 W [89], [21], [92] ⌧r 1 s [89], [92] d
th 0.99

Psw 1 W [89], [21], [92] � 0.1 ms/MHz[89], [21], [92] T 2 s

4.7.1 Relationship among Cluster Size, Energy, P ?
f , and P ?

d

In Figure 4.2, total number of samples of SUs versus the cluster size ranging from 1 to 100 is

depicted along with the corresponding P ?
f and P ?

d values which ensure Qf
th and Qd

th, respectively.

Curves with diamond, square and circle shaped markers show homogeneous clusters which

consist of SUs with identical SNRs of �5, �10 and �15 dB, respectively. The curve with the

star shaped markers, on the other hand, considers a heterogeneous cluster which consists of
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Figure 4.2: Total number of samples, P̃ ?
f , and P̃ ?

d vs. cluster size.

non-identical SUs such that the cluster size C on the x-axis composed of the best C SUs among

100 SUs with SNRs range from �20 and 0 dB. In both cases, the total number of samples, thus

the total sensing energy, increases with the cluster size. This is much more significant in the

heterogeneous case that asymptotically approaches its mean value and homogeneous case with

�10 dB. As can be seen from below subplot, enforcing SUs to have P f
m,n  0.5 and P d

m,n � 0.5

does not contradict with practicality since P ?
f and P ?

d are still far beyond those limits even for

impractically large cluster sizes.

4.7.2 Comparison Between Optimal and Heuristic Solutions

Figure 4.3 shows the comparison between the optimal exhaustive benchmark and heuristic

solutions for an average of 30 CRN scenarios each of which comprises of 4 PCs and 8 SUs

with SNRs randomly selected between 0 and �30 dB. The solid blue and red curves draw the

optimal homogeneous (Binomial) and heterogeneous (Poisson-Binomial) modes, respectively.

Similarly, the dashed curves with diamond and square shapes show the heuristic performance,

which minimizes ⌘ using SAH with the given prioritized channel order c⌘ returned from POH,

for homogeneous and heterogeneous modes, respectively. While the subplot (a) depicts the

objective itself, subplot (b) and (c) demonstrate the corresponding opportunity cost and the
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Figure 4.3: Comparison between the optimal and heuristic solutions for an average of 30 CRN
scenarios with 4 PCs and 8 SUs with SNRs randomly selected between 0 and �30 dB.

remaining time for the secondary data transmission, respectively. It is clear from the figure that

the proposed heuristic approach provides a very close performance to the benchmark in both

modes. Taking the heterogeneity into account, on the other hand, especially gives a superior

performance with respect the homogeneity assumption for 3 and more minimum number of SU

requirement. This is because of considering SUs with relatively low SNRs and enforcing them

to obtain exact local detection performance of SUs with relatively high SNRs. In other words, if

cluster members have a broad range of SNRs heterogeneous mode shows superior performance

than the homogeneous mode. On the contrary, if SUs have identical SNRs (i.e. cluster is

homogeneous in reality) considering heterogeneity will not make any di↵erence. Furthermore,

the reasoning behind the assignment of exactly � SUs is now more obvious due to the increasing

trend of the ⌘ with regard to �. Another significance of considering the heterogeneity is revealed

in subplot (c) where available time left for the secondary transmission is dramatically reduced in

homogeneous case as the slowest SU is enforced to have identical performance with others, which

directly reduces the achievable throughput. Subplots (d), (e) and (f) detail the cost factors of

the opportunity cost. As can be seen, reporting and switching energy consumption is very close
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to the sensing for the heterogeneous mode for all � values. However, sensing energy becomes

more significant in homogeneous mode for higher � valueAAAs since we enforce low SNR

SUs to sense with identical detection performance. Moreover, reporting and switching energy

consumption increase with � because the number of channel switches and reports increase with

the number of assigned SUs.
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Figure 4.4: Comparison of optimal and heuristic solutions for an average of 30 CRN scenarios
with 8 PCs and 4 SUs with SNRs randomly selected between 0 and �10 dB.

Likewise, Figure 4.4 shows the comparison between the optimal exhaustive benchmark and

heuristic solutions for an average of 30 CRN scenarios each of which comprises of 8 PCs and 4

SUs with SNRs randomly selected between 0 and �10 dB. Even though we will not go over the

underlying reasons of the curves, we will point out the followings: The proposed heuristic still

gives very close performance to the optimal values and follows the same trend. Since the average

SNR values is �5dB and the SNR range is tight, the di↵erence between the heterogeneous and

homogeneous modes are not as significant as in Figure 4.3. However, we note that opportunity

cost factors shows very close values due to the relatively high SNR values with respect to the

Figure 4.3.
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4.7.3 Numerical Results for SAH
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Figure 4.5: SAH results over 100 CRN scenarios with M = 20, N = 100, SNRs range from
�30 to 0 dB and � = 8. Behaviors of ⌘, E and R under di↵erent regimes with respect to (a)

number of SUs, (b) number of PUs and (c) mean SNRs.

Figure 4.5 demonstrates the behavior of ⌘, E and R under di↵erent regimes with respect

to di↵erent number of SUs, number of PUs and SNR distributions in subplots (a), (b) and (c),

respectively. While the solid green, blue and red lines draw the homogeneous mode under the

ESLR, ELR, and ESR, respectively, the dashed lines with the corresponding colors are used

for heterogeneous mode. We first note that the best ⌘ performance is always obtained under

the ESLR regime using c⌘. Similarly, the best E and R performance is always observed under

the ELR and ESR regimes using cE and cR, respectively. On the other hand, the worst case of

E (R) occurs under the SLR (ELR) since it does not care about energy (spectrum) during the

channel ordering and SU assignment phases. However, ⌘ gives a mediocre E and R performance

all the time since it couples both of them.

Figure 4.5-(a) shows the changes with respect to the number of SUs ranging from 8 to 160

for M = 20 and random SNRs between �30 dB and 0 dB. As the number of SUs increases, R

under the SLR increases in every 8 steps since having a new set of � SUs allows SAH to schedule
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one more PC. E under the SLR first decreases until N = 20 and then start increases. This is

primarily because of that small increments in number of SUs have more significant SU diversity

if the number of channels is relatively high in comparison to number of channels. However,

heterogeneity modes have a slight impact for N � 20 because network has more SU diversity

and SNR range of the best � SUs is tight due to the ordering. The increase of E under the SLR

after N = 20 is directly related to the greedy demand for scheduling more channels. Therefore,

⌘ under the SLR is a result of the behavior of E and R and it gives the worst performance

among others. E under the ELR is the best case and have a decreasing nature with respect to

N , which is because of increasing SU assignment diversity and high chance of finding high SNR

SUs to sense the most energy e�cient channel. On the contrary, R under the ELR follows a

mean value of 0.5 MHz since it only schedules the most energy e�cient channel and PCs have

an average apriori probability of 0.5, which is the worst case among others. As stated earlier,

E and R under the ESLR regime provide a mediocre performance since it is not greedy either

for E or R. As expected, it gives the best ⌘ performance since ordering and SU assignment is

made based on ⌘.

Figure 4.5-(b) shows the changes with respect to number of PCs ranging from 1 to 40 for

N = 100 and random SNRs between �30 dB and 0 dB. Under the SLR, R monotonically

increases with the number of PCs which is because of the increasing chance of finding PCs with

higher apriori probabilities. Accordingly, E under the SLR increases with the R since more

SUs are involved to sense more PCs, so does ⌘. However, R, E, thus ⌘ remains almost constant

under the ELR since the number of SUs is fixed and ELR only selects the most energy e�cient

channel which yields an average of 0.5 MHz data rate. Although E and R slightly increases

with the number of PCs under the ESLR, ⌘ slightly decreases since R has a higher increasing

peace than the E.

For M = 20 for N = 100, Figure 4.5-(c) shows the changes with respect to SNR scenarios

where SNR distribution follows a normal distribution with variance 10 dB and mean values on

x-axes. Although R does not experience a significant change until 28� 30 dB, E significantly

increases with mean SNR of SUs. Even if the mean SNR and thus the total number of samples

increases, SAH is able to find some PCs with low opportunity cost. After 28� 30 dB, however,



www.manaraa.com

84

most of the PCs become infeasible to schedule due to the poor sensing quality of the entire SUs.

Accordingly, SAH tends to schedule very few number of PCs due to their una↵ordable, that is

why R and E start to decrease. Behavior of ⌘ is simply a natural outcome of the underlying

reasons we gave for E and R.

4.8 Chapter Summary

In this chapter, we considered a multi-channel CSS scheduling framework to minimize the

induced sensing, reporting and channel switching energy per obtained opportunity subject to

the global detection and spectrum utilization constraints. Apart from previous works, we factor

the reporting error in and provide a general scheme which can be applied to any voting rule.

After formulating an optimal MINLP problem, we develop an equivalent convex framework for

specific instances of combinatorial solution space. In this way, we were able to develop very

e�cient yet fast heuristics for di↵erent regimes regarding the energy limitations and data rate

demands the performance of which is compared to the exhaustive benchmark solution. We

have also revealed the impact of heterogeneity and homogeneity assumption under di↵erent

network scenarios.
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CHAPTER 5. FULL-DUPLEX HYBRID ENERGY HARVESTING CSS

5.1 Overview

In addition to the goal of achieving more spectrum for less energy consumption in previous

chapters, communication society is now targeting EH communications which provide significant

advantages over traditional grid-powered and non-rechargeable and/or battery-powered wireless

devices [95]. By harvesting required energy from alternative natural resources such as solar,

vibrational, electromagnetic, thermoelectric, ambient wireless power etc., EH can achieve self-

sustaining green communication. For a given amount of energy, conventional EE-CRNs aims to

minimize the total sensing energy consumption subject to the fundamental collision constraint

to prevent SUs from interfering with the PUs. In EH systems, on the other hand, energy

needed for sensing and data transmission arrives intermittently and in random magnitudes of

energy because of the random nature of energy harvesting sources. Then, the ultimate goal

of EEH-CRNs would be, not only to minimize the over-all energy consumption, but to also

maintain sensing and transmitting tasks under random and intermittent energy arrivals. Such

a goal dictates an extra fundamental limit on the capacity of traditional CRNs: energy-causality

constraint which states that the energy harvested by a time instant must be greater than or

equal to the consumed energy until that time instant [17].

The generic energy harvesting system model can be classified into two types based on the

battery availability to store the harvested energy: 1) the harvest–use systems mandate that

the energy consumption rate should always be less than the instantaneous energy harvesting

rate [96]; 2) the harvest–store–use systems contains a battery to store the harvested energy

for the future purposes. In particular, RF harvesting is a suitable energy resource for green

CRNs since CRs can utilize idle spectrum while harvesting energy from the busy channels.
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Another appealing feature of the RF energy harvesting is the simultaneous information and

power transfer capability [19]. However, as a single antenna cannot be used for sensing and

transmitting at the same time, it can be shared by energy harvester and transceiver modules

via either time-switching or power-splitting methods. In the sequel, time-switching methods

in a harvest-store-use system is considered only since the previous chapters and most of the

traditional cognitive radio network studies focus on a time-slotted operation of SUs.

As we mentioned earlier, the energy e�cient cooperative spectrum sensing strategies are

not applicable to energy harvesting systems any more and a radical paradigm shift is necessary

to achieve an optimal energy harvesting cooperative spectrum sensing scheme. As an example,

it is very crucial to have an action strategy which decides on being in the following modes:

• Harvest Mode is the case where SU exploits timeslot duration only for energy harvesting.

This mode may be the optimal action to take when SUs neither have stored energy nor

data packets to transmit. In a di↵erent scenario with a desirable energy arrival rate, SUs

might have a light load of latency insensitive packets to transmit, however, harvesting

and storing energy to be ready for potential upcoming packets might be a wise decision

if the packet arrivals are bursty.

• Harvest-Sense-Transmit Mode could be more suitable if the packet and energy arrivals

follows a continuous pattern where harvest and sense ratio is required to be optimized.

Aside from the traditional sensing-throughput tradeo↵, harvesting is introduced as an

additional tradeo↵ domain. Therefore, subject to the collision and energy causality con-

straints, harvesting and sensing durations must be jointly optimized to harvest necessary

energy while minimizing the sensing duration and maximizing the available time left for

the secondary transmission. Moreover, based on the power allocation strategy and stored

energy level, SUs may be required to harvest more to transmit with high powers to obtain

more data rates.

• Sense-Transmit Mode might be the mode to operate as a traditional CR where the stored

energy is plentiful and allocation of time for energy harvesting is not beneficial due to

the insu�cient energy arrival rates.
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Nonetheless, deciding on such a strategy for each SU can be made in individual basis SUs

based on their energy characteristics or in a community basis by a central unit. A more

complicated issue arises when sensing scheduling of multiple primary channel is targeted due

to di↵erent energy storage levels and energy arrival rates of SUs. Scheduling involves more

complexity if SUs are solely empowered by RF energy harvesting, in such a case, while some

SUs seek for idle channel discovery for spectrum utilization and some others look for busy

channels for harnessing primary signals. In this case, traditional cooperative spectrum sensing

scheduling methods are required to be redesigned to support the second kind of SUs above.

5.1.1 Chapter Contributions and Novelty

In this chapter, only the harvest-sense-transmit mode is considered since other two modes

are a special case of the second one. The energy-arrival rate from renewable sources sig-

nificantly a↵ects the non-interrupted operation of a system which are purely empowered by

renewable sources. Therefore, hybrid powered systems equipped with back-up non-renewable

energy source may be more attractive to deal with the low energy-arrival rates in practice

[97]. In this respect, a full-duplex hybrid EH-CR module is first proposed to mitigate the half-

duplex constraint by exploiting two di↵erent energy storage and harvests energy from both

renewable sources, i.e., solar, and ambient RF signals. After demonstrating the di↵erences

in the timeslotted operation of SUs as a result of their heterogeneous sensing and reporting

channel characteristics, we develop the energy state evolution of both systems. Based on SUs’

energy states, a convex myopic policy optimization frame work is developed to find the optimal

energy harvesting policy to jointly obtain the optimal harvesting ratio, sensing duration, and

detection threshold of each SU which maximizes the sum of the achievable throughput of SUs

of the current timeslot subject to collision and energy-causality constraints.

Exploitation of two di↵erent storage devices/batteries is first considered in [20] where au-

thors enforce the secondary battery (SB) to transfer its all available energy to the primary

battery (PB). However, transferring the stored energy may not be necessary under a possible

energy loss during the energy transfer. Therefore, a more general EH module is proposed to

power the SUs directly from both PB and SB. Assuming SUs have homogeneous sensing and
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reporting channels (i.e., identical SNRs as in [98], channel gains, reporting errors etc.), opti-

mal sensing durations of all SUs will be the same. Based on this homogeneity assumption,

Binomially distributed K-out-of-N rule is extensively employed to conclude a global decision

by enforcing SUs to have identical detection and false alarm reports at the CH. In a practical

scenario where SUs have heterogeneous sensing and reporting channel qualities, however, en-

forcing SUs to have identical local reports at the CH causes SUs with relatively low SNRs to

sense for very long times. In addition to being energy ine�cient, conventional K-out-of-N is

also throughput ine�cient since SUs with relatively high SNRs must wait for the slowest SU

and the CH will not di↵use back the final decision until it collects all reports. Therefore, to

capitalize from the sensing and reporting quality diversity of SUs, a Poisson-Binomial K-out-

of-N rule is employed where SUs with di↵erent sensing and reporting qualities are allowed to

have di↵erent reported detection performances. Obtained results clearly demonstrate that the

combination of the proposed Poisson-Binomial based EEH-CSS and full-duplex systems provide

the best result in terms of sensing energy cost reduction, achievable throughput maximization

and harvested energy accumulation.

5.1.2 Chapter Organization

The rest of this chapter is organized as follows: Section-5.3 models the proposed full-duplex

system based on stochastic energy arrivals. Section-5.4, introduces the proposed CSS scheme.

After that, Section-5.5 characterizes the energy state evolution of each SU and formulates the

convex myopic policy optimization. Numerical results are presented in Section-5.6. Finally,

Section-5.7 summarizes the chapter.

5.2 Related Work

An influential work is presented in [99], which proposes a novel framework, enabling SUs to

opportunistically harvest ambient RF energy as well as reuse the spectrum of PUs. Also, the

transmission probability of SUs and the resulting system throughput of the CRN were derived

under a stochastic-geometry model. In his early work, Sultan considers a non-cooperative

spectrum sensing where a single SU tries to maximize the throughput while making decision
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on being either dormant or active to sense the primary channel based on a Markov decision

process [100]. Inspired by [101], Yin et al. studies the fundamental tradeo↵s among harvesting,

sensing, and transmission duration in CSS where SUs sense one-by-one and report via a perfect

CCC [98].

Park et.al. focus on maximizing the expected total throughput of a single SU-PU system

subject to energy causality and collision constraints. They divide the system operation into

a spectrum-limited regime and an energy-limited regime depending on where the detection

threshold lies. Their analytical and numerical findings show that the system is energy-limited

if the energy arrival rate is lower than the expected energy consumption for a single spectrum

access [102]. Based on a time-homogeneous discrete Markovian primary tra�c model, they

also develop a constrained POMDP, and then convert it to a computationally tractable uncon-

strained POMDP to obtain a spectrum access policy in which an SU decides on being active to

sense and transmit or being idle to conserve energy [103]. Again considering the same primary

tra�c model, they also derive the upper bound on the achievable throughput as a function

of the energy arrival rate, the temporal correlation of the primary tra�c, and the detection

threshold [104].

Authors of [105] consider a single-user multi-channel CRN setting and maximize the through-

put of SU under energy causality constraint and fading channel conditions. Based on the prob-

abilistic energy availability, primary network’s belief state, and channel conditions a channel

selection criterion is proposed to choose the best subset of channels for sensing. They construct

a channel-aware optimal and myopic sensing strategies in a POMDP framework depending

upon the proposed channel selection criterion. Usman and Koo consider a hybrid underlay-

overlay energy harvesting CRN where SUs can harvest energy from the primary user’s signal as

well as from the other ambient sources [106]. Similar to previous works, they employ a POMDP

to maximize long-term throughput of the system along with a energy threshold to determine

the transmission mode (overlay or underlay). Numerical results have shown that the proposed

system provides 60% improved throughput than overlay-only cognitive radio in certain cases

and 43% enhanced throughput than a hybrid CRN harvesting energy only from the ambient

sources.
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Authors of [107] identify the optimal pairing of the sensing duration and the detection

threshold in order to maximize the average throughput of the secondary network. Simulation

results show that the optimal sensing duration is determined based on which constraint needs

to have priority. Yin et. al. consider an energy harvesting CR system with a single SU-PU

pair where SU operates on save-then-transmit protocol. They investigate the SU’s optimal

cooperation strategy and optimal action in non-cooperation/cooperation modes to maximize

the SU’s achievable throughout and derive the optimal closed-form solutions. Based on the

optimal analytical results, they propose an optimal cooperation protocol to make the optimal

decision. Numerical results has shown that it outperforms the non-cooperation protocol, the

stochastic cooperation protocol, the optimal underlay transmission mode [108]. Authors of [109]

propose a system model where the SUs are able to cooperate to maximize the overall network

throughput through sensing. Di↵erent from other, they formulate the cooperative decentralized

optimization problem as a decentralized POMDP and apply a decentralized learning algorithm

based on the policy gradient and the Lagrange multiplier method to obtain optimal channel

access policies. In [110], authors develop a CSS scheduling policy so that the time average

utility generated by the sensors is maximized. Assuming infinite battery capacity, they first

consider an o✏ine setting and show that the optimal scheduling structure has a “majorization”

property, and then propose a procedure to construct a collaborative sensing policy with the

identified structure explicitly. For the online setting, on the other hand, they assume that the

energy harvesting processes at individual sensors are independent but not necessarily identical

Bernoulli processes and show that the expected long-term time average sensing utility has an

upper bound under any feasible scheduling policy satisfying the energy causality constraints.

After that, they propose a randomized myopic policy, which aims to select a number of sensors

with the highest energy levels to perform the sensing task in each slot.

5.3 System Model

Consider a CRN comprised of a single PC and N time synchronous and self-powered EH-

SUs. The PU works in a time slotted fashion such that the primary channel is either in a busy

or idle state for a given timeslot. The sensing and reporting channels conditions assumed to be



www.manaraa.com

91

constant during a timeslot. Similarly, SUs also cooperatively operate in timeslots of T seconds

to harvest, sense and utilize the primary channel. To facilitate the analysis in this chapter,

we assume that the SU always has data to transmit and demands for as higher achievable

throughput if available. The stochastic energy arrival rate is modeled as a random variable ⇤n

in [Joule/s] which follows a general distribution function with mean �n and variance �2

�
n

. For

example, ⇤n can be interpreted as the received amount of energy per time unit with respect to

received luminous intensity of a solar panel in a particular direction per unit solid angle. The

energy arrival rate within a timeslot t, �t
n, 8t, is assumed to be time invariant. Accordingly,

to store the harvested energy, super-capacitors are preferred storage devices due to their high

power density, good recycling ability and near perfect storing e�ciency (around 0.99). Albeit

this favorable features, they are half-duplex EH constrained. This leads to a performance

degradation in harvested energy amount and available time left for data transmission because

SUs have to split the timeslot for harvesting and sensing-transmitting. Therefore, exploiting

two di↵erent energy storage, a full-duplex energy harvesting model can be obtained to mitigate

the half-duplex EH constraint limitations as shown in Figure 5.1 where the PB has a storing

e�ciency of ⇣1n 2 [0, 1] and storage capacity of B1

n. The SB, on the other hand, can be either

identical of the PB or a conventional lithium-ion battery with a lower storing e�ciency ⇣2n < ⇣1n

and relatively large storage, B2

n >> B1

n. At the beginning of the each timeslot t, SU is aware

of available energy levels in the PB (B1

n (t)) and SB (B2

n (t)).

Figure 5.1: Full-Duplex Hybrid Energy Harvesting Model
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In Figure 5.1, the switch (a) splits the renewable energy arrivals in time without interrupting

the sensing-reporting-transmitting of the CR; %nT and (1 � %n)T durations are allocated for

storing the harvested energy on the PB and the SB, respectively. The switch (b) works in

opposite direction of the switch (a) to power the SU, i.e., while the PB/SB collects energy

arrivals the SB/PB powers the SU. In doing so, assuming negligible switching time, the SU is

able to harvest energy for the whole timeslot while powering the SU uninterruptedly. Hence, the

SU has
⇣

B1,t
n +B2,t

n

⌘

energy for the remaining timeslot for sensing, reporting and transmission

tasks. Right after execution of the local sensing, reporting and receiving the global decision,

CSS unit toggles the switch (c) to position 0 in the case of PU absence to transmit secondary

data with the remaining energy, otherwise it toggles the purple switch to position 1 to harvest

RF energy from the primary channel with the harvesting rate which is given by

�rf,t
n = P (dtn)

�✓⇣rfn I
h

P (dtn)
�✓ > P̄

i

[Watt] (5.1)

where P denotes the transmission power of the RF source, (dtn)
�✓ is the path loss over the

distance dtn with the corresponding path loss exponent ✓, ⇣rfn denotes the e�ciency of RF-

to-DC converter circuit, and I
⇥

P (dtn)
�✓ > P̄

⇤

is the indicator function to impose RF-to-DC

circuitry sensitivity on the received RF power such that there is no gain if the received power

is less than the sensitivity threshold, P̄ .

Figure 5.2: Time-slot Representation of (a) Half and (b) Full Duplex Energy Harvesting CRs
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5.3.1 Time-slotted Operation for Half-Duplex System

Half-duplex system (HDS) can be obtained as a specific case of the proposed full-duplex

model in Figure 5.1 by eliminating the SB and keeping the switch (b) in position 1 all the

time. In the HDS, as shown on the left in Figure 5.2.a, SU n harvests renewable energy

for %nT seconds, and uses the stored available energy from the previous timeslot along with

the harvested energy in the current timeslot to complete CSS tasks. Right after the sensing

duration, SUs keep harvesting energy until they receive a global decision feedback from the CH,

which is shown as a multicolor portion of the timeslot in Figure 5.2.a. Based on the decision,

the residual time is used for the secondary data transmission by toggling the switch (c) to

position 0 in case of H
0

, otherwise it is toggled to position 1 for RF energy harvesting until the

beginning of the next timeslot.

5.3.2 Time-slotted Operation for Full-Duplex Systems

The timeslotted operation of the full-duplex system (FDS) is demonstrated in Figure 5.2.b

where the positions of switches have also been shown in zeros and ones for the first SU to

provide readers with more insight into the proposed model. By using the SB, the SUs are now

able to harvest energy for the entire timeslot while also using the entire timeslot for sensing

and transmitting/RF harvesting. As mentioned earlier, the di↵erent sensing duration of SUs

problem still applies and SUs put themselves into sleep mode to save energy until they receive

a decision from the CH. The benefit of employing a FDS is intuitive since the SUs are able to

harvest for the whole timeslot instead of harvesting for just %nT as in HDS. We also note that

both HDS and FDS models may further be simplified for SUs which are solely empowered by

RF energy harvesting by eliminating the renewable energy harvester and replacing it with the

RF energy harvester.

5.4 CSS Model

Since the focus of this paper is the EH aspects of CRNs, a generic sensing method like

energy detection is adequate for this purpose. Energy detectors (EDs) have been extensively
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exploited as the ubiquitous sensing technique in the literature due to its simplicity, compatibility

with any signal type, and low computational and implementation complexity [30]. We denote

the apriori probability of idle and busy state of the primary channel as ⇡
0

= P [H
0

] and

⇡
1

= P [H
1

], respectively. To detect primary signals, ED of SU m measure the received signal

energy for a number of samples Sn and compares it with a threshold "n to decide on the PU

activity status. For a large enough number of samples (Sn � 30), probability of false alarm,

P f
n = P

⇥

H1

n|H0

n

⇤

, and probability of detection, P d
n = P

⇥

H1

n|H1

n

⇤

, are given by (2.9) and (2.10),

respectively.

After the local sensing process, SUs send their hard results un to the CH over a bi-

nary symmetric CCC. Denoting the reporting error probability as pn = P [ũn = 1|un = 0] =

P [ũn = 0|un = 1] where ũn is the hard decision received by the CH. The local false alarm and

detection probabilities received at the CH side are given by

P̃ f
n = P [ũn = 1|un = 0]P [un = 0|H

0

]

+ P [ũn = 1|un = 1]P [un = 1|H
0

]

= pn
⇣

1� P f
n

⌘

+ (1� pn)P
f
n (5.2)

P̃ d
n = P [ũn = 1|un = 0]P [un = 0|H

1

]

+ P [ũn = 1|un = 1]P [un = 1|H
1

]

= pn
⇣

1� P d
n

⌘

+ (1� pn)P
d
n (5.3)

The CH collects ũn’s and make the global decision using the following test

K =
M
X

n

ũn
H1

R
H0

 (5.4)

which follows the Poisson-Binomial distribution (K follows Binomial distributions as a special

case P̃ f
n = P̃ f , P̃ d

n = P̃ d, 8n). Using equations (5.2) and (5.3) in Poisson-Binomial distri-

bution, the CH obtains the global false alarm and detection probabilities by fusing the local



www.manaraa.com

95

reports as follows

Qf = P [K �  | H
0

]

=
N
X



X

A2F


Y

m2A
P̃ f
n

Y

m2Ac

⇣

1� P̃ f
n

⌘

(5.5)

Qd = P [K �  | H
1

]

=
N
X



X

A2F


Y

m2A
P̃ d
n

Y

m2Ac

⇣

1� P̃ d
n

⌘

(5.6)

where F is the set of all subsets of  integers that can be selected from {1, 2, 3, . . . , N} . Since

F has
�N


�

elements, using an e�cient method to calculate Eq. (5.5) and (5.6) is very impor-

tant, especially when N is very large. For this purpose, probability mass function (pmf) and

cumulative distribution function of Poisson-Binomial random variables can be expeditiously

calculated in order of O(N log
2

N) from polynomial coe�cients of the probability generating

function of K [80].

5.5 Energy State Evolution and Myopic Policy Optimization

In EH-CSS, energy states of SUs evolve over time such that energy state in the next timeslot

depends on the energy state and action taken (i.e., duration of energy harvesting, spectrum

sensing, and transmitting) in the current timeslot. We define the maximum time spent for

harvesting+sensing for HDS/FDS in (5.7)/(5.8), the net gained energy during ⇥hd/⇥fd in

(5.9)/(5.10), harvested energy from RF source for HDS/FDS in (5.11)/(5.12), and the total

harvested energy from renewable source for FDS in (5.13) as follows

⇥hd = max (%nT + Sn⌧s) (5.7)

⇥fd = max (Sn⌧s) (5.8)

�hd
n = �t

n⇣n
⇣

⇥hd � Sn⌧s
⌘

� SnEs (5.9)

�fd
n = �t

n

⇥

⇣1n%nT + ⇣2n[⇥� %nT ]
+

⇤

� SnEs (5.10)

�rf,hd
n = �rf,t

n

⇣

T �⇥hd
⌘

(5.11)

�rf,fd
n = �rf,t

n

⇣

T �⇥fd
⌘

(5.12)
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⌥n = �t
n

⇥

⇣1n%n + ⇣2n (1� %n)
⇤

T (5.13)

where ⌧s is the sensing duration per sample, Es is the sensing energy expenditure per sample,

[x]+ = max(0, x), Etx
n = min

�

En, Bt�1

n +�n
�

is the transmission energy where 0  En  Bn

is the allocated transmission energy for SUn. By setting En = Bt�1

n + �n, SUs exhaust all

available residual energy for secondary data transmission, otherwise residual energy of SUs for

the next timeslot will be Bt
n which is shown for all four cases in Table 5.1.

Table 5.1: Energy States at the beginning of timeslot t, Bt
n.

HDS Global Decision: H
0

Global Decision: H
1

⇡
0

min
�

Bn, Bt�1

n +�hd
n � Etx

n

�

min
�

Bn, Bt�1

n +�hd
n + �t

n

�

T �⇥hd
��

⇡
1

min
�

Bn, Bt�1

n +�hd
n � Etx

n

�

min
⇣

Bn, Bt�1

n +�hd
n + �t

n

�

T �⇥hd
�

+�rf,hd
n

⌘

FDS Global Decision: H
0

Global Decision: H
1

⇡
0

min
�

Bn, Bt�1

n +⌥n � SnEs � Etx
n

�

min
�

Bn, Bt�1

n +⌥n � SnEs
�

⇡
1

min
�

Bn, Bt�1

n +⌥n � SnEs � Etx
n

�

min
⇣

Bn, Bt�1

n +⌥n � SnEs +�
rf.fd
n

⌘

For any taken action an = {%n, Sn, "n,} , 8n, there are four possible outcomes:

1. Idle State Detection with probability ⇡
0

(1�Qf ) : In this case, SUs correctly detect the

absence of the PU while it is indeed absent. Hence, by exhausting Etx
n amount of energy,

SUs obtain expected achievable throughput of CSS in HDS and FDS as

Rhd = ⇡
0

(1�Qf )R
hd
00

= ⇡
0

(1�Qf )
X

n

T �⇥hd

T
log

2



1 +
Etx

n

T �⇥hd

�

(5.14)

Rfd = ⇡
0

(1�Qf )R
fd
00

= ⇡
0

(1�Qf )
X

n

T �⇥fd

T
log

2



1 +
Etx

n

T �⇥fd

�

(5.15)

where Rhd
00

and Rfd
00

are sum of the achievable throughput of HDS and FDS for a normal-

ized noise power at a given timeslot, respectively.

2. False alarm with probability ⇡
0

Qf : PU is absent while the channel is detected to be busy.

The SUs decided to harvest from both renewable source and RF energy instead of utilizing

the channel but only renewable source is harvested.
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3. Miss-Detection with probability ⇡
1

(1�Qd): PU is present while the sensing result is

incorrect. SUs decided to transmit but transmission was unsuccessful due to the collision

with PUs.

4. True-Detection with probability ⇡
1

Qd: PU is present while the sensing result is correct.

The SUs decided to harvest from both renewable source and RF energy instead of utilizing

the channel.

Based on these outcomes and energy state evolution of SUs, an optimal design for energy

harvesting and sensing strategy can be formulated as an MDP with an uncountable and contin-

uous state and action space. Hence, a myopic policy is considered to only focus on the current

timeslot by ignoring its e↵ects on future rewards. It has been shown that a myopic policy is

very close to the optimal policy with greatly reduced computational cost [111].

P 5.1 : max
%,S,",k

log
2

(⇡
0

) + log
2

(1�Qf ) + log
2

⇣

Rhd
00

⌘

1: s.t. log
⇣

Qd
th

⌘

 log (Qd)

2: 0.5  P d
n , 8n

3: P f
n  0.5, 8n

4: 0  T �⇥hd

5: 0  Bt�1

n +�hd
n , 8n

6: 0  %n  min
�

Bn �Bt�1

n , 1
�

, 8n

7: 30  Sn  T/⌧s, 8n

8: k 2 N+, Sn 2 R+, " 2 R, 8n

Accordingly, problem of maximizing the average achievable throughput for HDS can be

formulated as in P 5.1 where we take the logarithm of (5.14) to put the objective in a convex

form. P 5.1 is an MINLP problem whose mixed-integer nature is due to the variables Sn and

. It is a practical approach to relax the problem by unintegerizing Sn. After obtaining the

optimal reel valued solution, one can obtain the closest upper integer value, which does not

negatively e↵ect the system performance since Sn >> 1 and ⌧s, Es << 1. However, P 5.1
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is still an MINLP problem due to the decision rule, 1    N and its optimal value can be

found by the branch-and-bound algorithm. For the rest of this chapter, we will employ the

majority voting rule,  = dN/2e where d·e denotes the ceiling operation, which has already

been shown to be the optimal voting rule for required minimum SNR (i.e. required minimum

sensing energy cost) of CSS [13]. Therefore, the following convexity analysis is based on the

unintegerization of Sn for  = dN/2e.

The first term of the objective function is a constant and out of the consideration. The

second term is a concave function since Qf/Qd are log-concave functions of P̃ f
n /P̃ d

n in both

Binomial and Poisson-Binomial distribution cases. It is also non-decreasing in each term P̃ f
n /P̃ d

n

since Qf/Qd intuitively increases as SUs report with more confidence. P f
n /P d

n are expressed in

the form of Q function in (2.9)/(2.10) which is convex and concave for values Q(·)  0.5 and

Q(·) � 0.5, respectively. Indeed, constraining local detection probabilities to be higher than

0.5 and false alarm probabilities to be lower than 0.5 are not against the practical point of

interests. Reported local probabilities P̃ f
n /P̃ d

n , on the other hand, are non-negative weighted

sums of the reporting error in (5.2)/(5.3) and still preserve the concavity and convexity at the

CH side. Furthermore, exploiting the convex composition mechanics [34], the concavity of the

log(1�Qf ) and the first constraint, log(Qd) > Qd
th is given in Appendix A.1.2.

The last term in the objective is the logarithm of Rhd
00

which is a function of ⇥hd in (5.7).

⇥hd is a piece-wise maximum of functions fn(%n, Sn) = %nT + Sn⌧s which is a linear function

of %n, Sn and constant for %n0 , Sn0 , 8n0 6= n 2 [1, N ]. Since piece-wise maximization preserves

the convexity and fn(%n, Sn), 8n is linear, ⇥hd is a convex function of %n, Sn, 8n, which is again

followed from the convex composition rules. On the other hand, since g(x) = log(1+x) is con-

cave and monotonically non-decreasing for non-negative x and perspective operation preserves

concavity [34], the inner part of last term can be considered as the perspective function of ⇥hd.

Thus, the last term of the objective is also concave following from the convex composition rules.

Constraint 4, ⇥hd  T , defines the upper-bound of the maximum harvesting+sensing time as

the timeslot duration. Constraint 5 enforces the system to have enough storage to execute the

sensing operation for SnEs amount of energy. Constraint 6 limits the harvesting rate since

harvesting and storing energy up to a fully charged battery does not provide any additional
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energy. Then, number of samples, Sn in constraint 7, is lower-bounded to evoke the CLT and

upper-bounded to maximum permissible number of samples within a timeslot duration. For

FDS, P 5.1 can be modified to become P 5.2 as follows

P 5.2 : max
%,S,",k

log
2

(⇡
0

) + log
2

(1�Qf ) + log
2

⇣

Rfd
00

⌘

1: s.t. log
⇣

Qd
th

⌘

 log (Qd)

2: 0.5  P d
n , 8n

3: P f
n  0.5, 8n

4: 0  T �⇥fd

5: 0  B1,t�1

n +B2,t�1

n +�fd
n , 8n

6: 0  B1,t�1

n + �t
n⇣

1

n%nT  B1

n, 8n

7: 0  B2,t�1

n + �t
n⇣

2

n (1� %n)T  B2

n, 8n

8: 30  Sn  T/⌧s, 8n

9: k 2 N+, Sn 2 R+, " 2 R, 8n

where constraints 5, 6 and 7 is adapted for FDS to apply the same reasoning given above.

Even though the convexity analysis of P 5.2 follows the same spirit of P 5.1, it is worth

indicating that the objective function of P 5.2 is free of %n. Unlike in HDS, this is because

of the FDS feature that the entire timeslot is accessible for both harvesting and sensing +

transmitting. SUs can spend the harvested energy in the beginning of a timeslot within the

same timeslot, which requires joint optimization of all variables. Hence, if SUs are allowed to

expend only the residual energy from the previous timeslot, variables %n and (Sn, "n, ) can

be separated inherently. Such a policy can be formulated as

P 5.3 : max
%
n

⌥n = �t
n

⇥

⇣1n%n + ⇣2n (1� %n)
⇤

T

1: s.t. 0  B1,t�1

n + �t
n⇣

1

n%nT  B1

n, 8n

2: 0  B2,t�1

n + �t
n⇣

2

n (1� %n)T  B2

n, 8n

where the objective is the total harvested energy during the entire timeslot and harvesting

ratios are limited to the PB and SB capacity in lines 1 and 2, respectively, so that, once one
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of them is fully charged, the other one starts to harvest energy in order to avoid wasting the

energy arrivals. P 5.3 can equivalently be written as

P 5.4 : max
%
n

%n�
t
n

�

⇣1n � ⇣2n
�

T

1: s.t. max

 

0,�B1,t�1

n

�t
n⇣

1

nT
, 1� B2

n �B2,t�1

n

�t
n⇣

2

nT

!

 %n  min

 

1,
B1

n �B1,t�1

n

�t
n⇣

1

nT
, 1 +

B2,t�1

n

�t
n⇣

2

nT

!

Based on P 5.4, finding the optimal harvesting policy of FDS is trivial and can be analyzed

in three di↵erent cases:

1. ⇣1n = ⇣2n: In this case, the PB and SB have identical harvesting e�ciency and any %n

within the feasible region is optimal.

2. ⇣1n > ⇣2n: In this case, optimal harvesting ratio is attained at the upper bound.

3. ⇣1n < ⇣2n: In this case, optimal harvesting ratio is attained at the lower bound.

Please note that the optimal policy is independent from the storage capacities, B1

n and B2

n.

5.6 Results and Analysis

Even though the proposed work is adaptable to more general scenarios, throughout the

simulations, we deliberately enforce HDS and FDS to have identical total storage capacity

and storing e�ciency to establish a fair comparison between them. Energy arrival intensity

is assumed to follow Gamma distribution with shape and scale parameters 1 and 0.75, re-

spectively. To clearly show the impacts of heterogeneous SNR levels, cooperation of 5 SUs is

considered with �5, �10, �15, �20, �25 SNRs in dB. Unless it is explicitly stated otherwise,

the parameters given in Table 5.2 is exploited through the results.

Table 5.2: Default parameters used for obtaining results

Par. Value Par. Value Par. Value Par. Value

Bn 30 J B1
n 15 J B2

n 15 J �2
n 1

⇣n 0.99 ⇣1n 0.99 ⇣2n 0.99 ⇣rfn 0.6

Wn 1 MHz T 2 s ⌧s 1 µs ⇡0 0.4, 0.8

Qd
th 0.99 En 2 J Es 1 µJ ✓ 2
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Figure 5.3: Comparison of Binomial and Poisson-Binomial based fusion rules: Optimal
timeslots for Binomial (a) and (b) Poisson-Binomial, number of samples, detection and false

alarm probabilities for Binomial (c) and (d) Poisson-Binomial.

Figure 5.3 compares the optimal values of traditional binomial and the Poisson-Binomial

based majority voting rule,  = dN/2e, for an HDS with an empty storage. As can be observed

from (a) and (c), the SU with the lowest SNR has to expend its all harvested energy to sense

for a long duration in order to achieve 0.9/0.1 local Pd/Pf target. For Poisson-Binomial case,

on the other hand, while SUs with relatively low SNRs are relaxed to have low local detection

performances (around 0.5), SUs with relatively high SNRs are enforced to have nearly perfect

local detection performances. Therefore, by exploiting the SNR diversity of SUs, Poisson-

Binomial approach reduced the required sensing energy, which leaves more room in a timeslot

for harvesting and secondary transmission. Even though SUs with high SNRs harvest more

energy in HDS, utilization of this energy in terms of the achievable throughput is negatively

a↵ected by the unnecessarily long sensing duration of the slowest SU. Overall, considering the

sensing and reporting channel heterogeneity of SUs by assigning di↵erent local false alarm

and detection probabilities is more e�cient and balanced in terms of harvesting, sensing, and

throughput e�ciency.
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Figure 5.4: Horizontal energy levels and throughput for ⇡
0

= 0.4.

Figure 5.4 demonstrates the above discussion for a finite horizon of size 50 where apriori

probability of being idle for the channel is 0.4. The bottom plot shows the energy levels at the

beginning of the timeslots, and the middle plots show the corresponding achieved data rate

corresponding to the actual channel state shown at the bottom. Since the primary channel

is mostly busy, which is detected with at lest Qd
th = 0.99 probability, both HDS and FDS

accumulate energy due to the lack of chance to spend it for transmission. It is clear that, the

SU with the lowest SNR does not experience energy accumulation in both HDS and FDS under

the traditional binomial case. However, its negative nature is mitigated in Poisson-Binomial

approach and it behaves similar to other SUs. Poisson-Binomial case in HDS have superior

performance than the traditional one in terms of the throughput. When it comes to FDS, both

Poisson-Binomial and Binomial approach have a better performance than the HDS. Among all

combinations, It is clear that the combining the FDS with the Poisson-Binomial is the best

solution.

Similar observations can be made for Figure 5.5 where the apriori probability of being idle

for the channel is 0.8. In this case, the PU is mostly absent and SUs take advantage of this by
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Figure 5.5: Horizontal energy levels and throughput for ⇡
0

= 0.8

utilizing the channel instead of not transmitting and saving the harvested energy. It is worth

noting that if the energy arrival intensity increases, the slope of the energy accumulation will

also increase, or vice versa.

5.7 Chapter Summary

In this chapter, the performance of half-duplex and full-duplex energy harvesting systems

are investigated under the heterogeneous sensing and reporting channel characteristics of SUs.

The results show that exploiting the hybrid full-duplex EH system gives a superior performance

since the whole timeslot is available for both EH and sensing-reporting-transmitting tasks.

Moreover, instead of using a traditional Binomially distributed voting rule which enforces SUs

to see identical local detection performances at the CH, exploitation of Poisson-Binomially

distributed voting rule allowed the capitalization the SU heterogeneity, which has yielded less

energy cost and more time left for secondary data transmission. Finally, it is shown that the

combination of the full-duplex EH with the Poisson-Binomially distributed voting rule gives
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the best result in terms of in terms of sensing energy cost reduction, achievable throughput

maximization and harvested energy accumulation under the network heterogeneity.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions and Summary of Contributions

EEH-CRNs have potential of self-sustaining its spectrum and energy demands in an oppor-

tunistic and non-intrusive manner such that it keeps its harm to the primary network and the

environment at a negligible level. To alleviate the shortcomings of individual SUs, CSS is pri-

marily exploited to obtain cooperative gain by taking benefits from spatiotemporal diversity of

individual observations. However, such a gain is not free of energy, delay, and communications

overhead in real life scenarios. If the minimization of the energy cost along with the maximiza-

tion of the obtained opportunity is the main concern of the system design and a designer is

obligated to obey a collision constraint to protect primary network activity, there exists many

tradeo↵s to be dealt with as repeatedly pointed out through the thesis. In a heterogeneous

CRN scenario, on the other hand, the complexity of the design increases since every single SU

is required to be considered by its own sensing and reporting characteristics. Combinatorial

nature of the problem is another major issue when there exists multiple PCs o↵ering di↵erent

levels of QoS. In such a case, one needs to determine the optimal set of PCs to be scheduled

for sensing along with the optimal set of SUs and their optimal sensing parameters to sense

those PCs. Since the PU protection is a non-linear constraint, the system design becomes an

MINLP problem which is known to be NP-hard and requires impractical time complexity even

for moderate sizes of CRNs. In addition to the collision constraint, EH restricts the system

design to another fundamental limit, namely, the energy causality constraint which is a result

of random nature of the energy arrivals. In this thesis, all research e↵orts have focused on

achieving a green CRN by satisfying these fundamental limits and taking the practical con-
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cerns into account. In the sequel, a brief summary of the main contributions of the thesis is

outlined.

1. In Chapter 3, partitioning of a heterogeneous CRN into clusters was addressed such that

each cluster is responsible for sensing a PC and an SU can join at most one cluster

at a time. The set of PCs to be sensed was given and SUs were required to sense all

of them. This problem was formulated as a multi-objective MINLP problem with the

following objectives: 1) Intra-cluster energy minimization of each cluster, 2) Intra-cluster

throughput maximization of each cluster, and 3) Inter-cluster energy and throughput

fairness. A two tier solution strategy is developed from macro and micro perspectives.

While the macro perspective was dealing with the selection of SUs into cluster, the micro

perspective was a sub-routine to evaluate the fitness of candidate solutions generated by

the macro perspective using a multi-objective genetic algorithm. In the micro perspective,

a generalized CH selection procedure was developed to find the best CH with the minimum

reporting error and the optimal routing paths from cluster members to the best CH.

Numerical results have shown that the performance of multihop diversity is superior

to traditional single hop approach and it is robust against the BEP wall phenomenon

after which there is no reliable CSS [13]. Given the best CH and optimal routing paths,

a novel HDF based CSS scheme was developed in a convex framework by taking the

heterogeneity of the sensing quality of SUs into consideration. Using the same spirit,

a WSST is proposed for quantized SDF based CSS by assigning weighted sample size

proportional to SUs’ sensing quality. A significant performance increase was observed

with respect to the CSS schemes which assumes the homogeneity of SUs and treats them

equally.

2. Unlike Chapter 3, Chapter 4 considered the case when the number of PCs is very large

such that they cannot be sensed at the same time. A PC may provide very low QoS due

to its high probability of being busy and/or it may require very high energy consumption

since SUs have very low sensing quality to reliably sense this PC. If both of these cases

happen at the same time, a poor QoS will be obtained even though a large amount of
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energy is expended. Therefore, determination of the set of PCs to be sensed was focused

in Chapter 4. On the other hand, restricting SUs to join at most one cluster at a time

may not be the best strategy if the SU has high SNR on di↵erent PCs. That is, it can

sense multiple PCs at a given timeslot for a very low energy cost. However, an SU needs

to reconfigure its radio and sensing parameters to sense multiple PCs. This naturally

requires an additional energy cost of channel switching and time delay. Defining the

opportunity as the achievable total data rate and its cost as the total energy consumption

as a result of sensing, reporting and channel switching operations, an CSSS problem

was formulated to minimize the cost per obtained opportunity subject to collision and

spectrum utilization constraints. An optimal CSSS is required to determine the following:

1) The optimal subset of PCs to be scheduled for sensing, 2) The SU assignment set for

each scheduled PC, and 3) Optimal sensing parameters of SUs for each PC. Assuming

1 and 2 are given, a convex framework of the sub-problem is established. After that,

a closed-form expression for the homogeneity assumption was derived for obtaining a

more tractable approach and for comparison purposes. Exploiting this sub-problem, a

prioritized ordering heuristic was developed to order PCs under the spectrum, energy

and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic

is proposed and is shown to have a performance that is very close to the exhaustive

optimal solution. Finally, the behavior of the CRN is numerically analyzed under these

three regimes with respect to various numbers of SUs, PCs and mean SNR levels.

3. In addition to the collision constraint, energy causality is another fundamental constraint

to be satisfied by EH-CRNs. This is mainly because of the random and intermittent

arrivals of the energy. Due to the half-duplex EH constraint which does not allow simul-

taneous charging and discharging of the ultra-capacitors, harvesting duration emerges as

an additional tradeo↵ and a timeslot is required to be shared among harvesting, sensing

and secondary transmission. In Chapter 5, a full duplex hybrid EH-CR module is pro-

posed to solve the half-duplex EH limitation and to harvest from both renewable source

and ambient RF signals. After demonstrating the di↵erences in the timeslotted opera-
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tion of SUs for a single PC, the energy state evolution of half and full duplex systems are

derived under stochastic energy arrivals. To find an optimal myopic EH policy, a con-

vex optimization framework is then developed to jointly obtain the optimal harvesting

ratio, sensing duration and detection threshold of each SU which maximizes the sum of

the achievable throughput of cooperating SUs subject to collision and energy-causality

constraints. Obtained results demonstrated that the combination of proposed full-duplex

EH system with the consideration of heterogeneity provide the best result in terms of

sensing energy cost reduction, achievable throughput maximization and harvested energy

accumulation.

6.2 Future Work

Some of the possible future research directions can be given as follows:

• Proposed multihop reporting based CH and route selection had the goal of achieving

the minimum total reporting error. From a delay sensitive approach, however, proposed

method could be adopted to minimize the total time delay, hence, increasing PC avail-

abilities.

• Although various HDF and SDF based CSS schemes were investigated and compared with

respect to their energy e�ciency performance, a generalized policy might be beneficial to

decide on which scheme to employ according to sensing and reporting quality of SUs. As

an illustration, an optimal policy may be developed to decide on the number of reported

bits by each SU, which would assign various quantization resolutions for each SU.

• In Chapters 3 and 4, assignment of SUs into clusters were mostly studied to minimize the

total energy cost. However, another practical concern should also take the spatiotemporal

correlation of SUs on the same PC during the SU assignment.

• Finally, Chapter 5 enforced all SUs to be involved in sensing in a greedy manner. How-

ever, an optimal action policy would provide a higher performance gain if SUs wisely

decide to cooperate for sensing or keep silent based on their battery levels and energy
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arrival rates. Similar to di↵erent energy and spectrum availability regimes in Chapter

4, developing di↵erent action policies could be very useful. Another practical approach

would be generalizing the proposed methods along with the aforementioned future works

to CRNs with multiple PCs.
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APPENDIX A. CHAPTER 3 PROOFS

A.1 Convexity Analysis of Hard Decision Case

The convexity analysis of P 3.1-LLP and P 3.1-ULP are handled in two subsections: A)

After showing that P 3.1 is not a convex problem, the parameterized concavity / convexity of

P d
m,n(S

n
m, "nm, ⇢nm) / P f

m,n(Sn
m, "nm) is proven. B) Based on part A, it is shown that the global

detection / false alarm probability Qd
m(P̃ d

m,n(S
n
m, "nm, ⇢nm)) / Qf

m(P̃ f
m,n(Sn

m, "nm)) is a log-concave

function of P̃ d
m,n(S

n
m, "nm, ⇢nm) / P̃ f

m,n(Sn
m, "nm), so that line 2 in P 3.1-LLP and lines 2-3 in P

3.1-ULP are both convex constraints.

Throughout this appendix, cluster and SU indices (i.e, m and n) are omitted for the sake

of notational convenience without loss of generality. To distinguish from each other, the inside

expressions of erfc(·) in (2.15-2.16) are denoted as follows

f(S, ") =
A"p
S

+B
p
S

g(S, ", ⇢) =
1

1� ⇢2

✓

A"p
S

+ (B � ⇢)
p
S

◆

where A = 1�⇢2

2⇢ and B = A log(1 � ⇢2) + ⇢. Since convex composition rules is extensively

exploited in this section, it is better to remind the readers of these rules as follows

Remark A.1: For b : Rk ! R, c : Rn ! Rk, a = b � c : Rn ! R is defined by a(x) =

b(c(x)) = b(c
1

(x), . . . , ck(x)) for x 2 Rn.

1. a is convex if b is convex and non-increasing in each argument, and ci is concave in x,

8i.

2. a is concave if b is concave and non-increasing in each argument, and ci is convex in x,

8i.
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A.1.1 Concavity / convexity of P d
m,n(S

n
m, "nm, ⇢nm) / P f

m,n(Sn
m, "nm)

Local false alarm and detection probabilities are given in (2.15-2.16), where ⇢ is a given

parameter, thus, it is not considered to be an optimization variable taken into account in the

convexity analysis.

Lemma A.1: P d(S, ", ⇢) and P f (S, ") are neither convex nor concave functions of (S, "), and

neither are Qd
m(P̃ d(S, ", ⇢)) and Qf

m(P̃ f (S, ")). Hence, P 3.1 is not a convex optimization

problem.

Proof. This is the scalar case of the composition rule given in Remark A.1 with k = 1, n = 2,

b : erfc(·), and c : f(S, "). Although erfc(·) is a non-increasing convex and concave function

for cases erfc(·)  0.5 and erfc(·) � 0.5, respectively, to meet the composition requirements

erfc(f(S, ")) / erfc(g(S, ", ⇢)), f(S, ") / g(S, ", ⇢) must be concave / convex in (S, "). However,

f(S, ") and g(S, ", ⇢) are neither convex nor concave in f(S, ") since the Hessian matrix of

f(S, ") in (A.1) and that of g(S, ", ⇢) in (A.2) are neither positive nor negative semi-definite as

follows

52f(S, ") = S�3/2

2

6

6

4

3A"
4S �

B
4

�A
2

�A
2

0

3

7

7

5

(A.1)

52g(S, ", ⇢) =
S�3/2

1� ⇢2

2

6

6

4

3A"
4S �

B�⇢
4

�A
2

�A
2

0

3

7

7

5

(A.2)

Therefore, P f (S, ") and P d(S, ", ⇢) are neither convex nor a concave function of (S, "). Thus,

this result directly a↵ects the convexity / concavity of Qf
m(P̃ f (S, ")), Qd

m(P̃ d(S, ", ⇢)), and P

3.1.

Lemma A.2: This Lemma provides the basis for convexity of parameterized approach used in

bilevel optimization.

1. f(S, ") and g(S, ", ⇢) are both linear functions of ". Thus, P f (S, ")  0.5 / P d(S, ", ⇢) �

0.5 is a convex / concave function of ".
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2. For a parameterized ", f(S, ") is a concave function of S if S � 3A"/B, and a convex

function of S if S  3A"/B�⇢. Thus, P f (S, ")  0.5 / P d(S, ", ⇢) � 0.5 is a convex /

concave function of S for 3A"
B�⇢ � S � 3A"

B .

Proof. 1. Because of @2f(S,")
@"2 = @2g(S,",⇢)

@"2 = 0, f and g are both convex and concave functions

of ", i.e. linear. Since erfc(·)  0.5 is a non-increasing convex function of f(S, ") and

f(S, ") is a concave function of ", their composition P f (S, ")  0.5 is also convex in ". In

a similar manner, since erfc(·) � 0.5 is a non-increasing concave function of g(S, ", ⇢) and

g(S, ", ⇢) is a convex function of ", their composition P d(S, ", ⇢) � 0.5 is also concave in

".

2. By using the same composition rules in (a), for a parameterized "̄, @2f(S,"̄)
@S2 = S�3/2

4

�

3A"̄
S �B

�



0 is needed to assure the concavity of f(S, "̄) in S. Noting that the sensing dura-

tion cannot be negative (i.e. S � 0), this condition reduces to S � 3A"̄
B . Likewise,

@2g(S,"̄,⇢)
@(S)2 = S�3/2

4(1�⇢2)

�

3A"̄
S � (B � ⇢)

�

� 0 is required to assure the convexity of g(S, "̄, ⇢).

Due to S � 0, this condition reduces to 3A"̄
B�⇢ � S.

As a result, line 2 in P 3.1-LLP and lines 3-4 in P 3.1-ULP are convex constraints.

Lemma A.3: Convexity and concavity analysis in Lemma A.2 also hold for reported local

probability of detection, P̃ d(S, ", ⇢), and reported false alarm probability, P̃ f (S, ").

Proof. In (3.10-3.11), P̃ d(S, ", ⇢) and P̃ f (S, ") are expected values of P d(S, ", ⇢) and P f (S, ")

over the reporting channel error probabilities, respectively. Thus, Lemma A.3 is an immediate

result of the fact that non-negative weighted summation preserves convexity and concavity.

A.1.2 Log-concavity of Qd
m(P̃ d

m,n) and Qf
m(P̃ f

m,n)

Sum of independent (but not necessarily identical) Bernoulli variables forms a log-concave

random variable since log-concavity is closed under convolution [112]. Consequently, sum of

local hard decision reports, K given in (3.12), is a summation of independent Bernoulli ran-

dom variables and it is log-concave under both identical (K ⇠ B(C, P̃ d) ) and nonidentical

(K ⇠ PB(C, P̃ d) ) Bernoulli trial cases. Since log-concavity is preserved by integration [34],
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cumulative distribution function (cdf ), P(K  ), and survivability function (sf ), P(K � ), of

a log-concave random variable are also log-concave functions. However, this is true with respect

to  which is a parameter in our case. Therefore, it is necessary to analyze the log-concavity

of these functions with respect to P̃ d(S, ", ⇢) and P̃ f (S, ") to establish connection to concavity

in (S, ").

Lemma A.4: Pmf of a Binomial random variable K ⇠ B(C, P̃ d) / K ⇠ B(C, P̃ f ) is a log-

concave function of P̃ d / P̃ f , so are its cdf and sf.

Proof. Without loss of generality, the proof for P̃ d is shown and it can be repeated for P̃ f .

The logarithm of Binomial pmf and its second derivative are given as

log (P (K = i)) = log

✓

C

i

◆�

+ i log(P̃ d) + (C � i) log(1� P̃ d)

@2 log (P (K = i))

@(P̃ d)2
= � i

(P̃ d)2
� C � i

(1� P̃ d)2
, 1  i  C

where the second derivative is always non-positive since C � i, hence, log(P (K = i)) is a

log-concave function of P̃ d.

Since log-concavity is preserved by integration as indicated above, cdf and sf of K ⇠

B(C, P̃ d) are also log-concave functions of P̃ d.

Lemma A.5: Pmf of a Poisson-Binomial random variable K ⇠ PB(C, P̃ d) / K ⇠ PB(C, P̃ f )

is a log-concave function of P̃ d / P̃ f , so are its cdf and sf.

Proof. The proof for P̃ d is considered without loss of generality and the same steps can be

repeated for P̃ f . Fernandez et. al. show that the distribution of Poisson-Binomial random

variable is given by the following probability generating function [80]

A
0

+A
1

z +A
2

z2 + · · ·+ACz
C = ↵(z � s

1

)(z � s
2

) · · · (z � sC)

where polynomial coe�cients on the left hand side represent the pmf in terms of the real roots

on the right hand side (i.e. Ai = P(K = i), 1  i  C), ↵ =
QC

n=1

P̃ d
n and sn = �1� ˜P d

n

˜P d

n

, 1 

n  C.
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The coe�cients of a polynomial with real negative roots are log-concave functions of the

roots [112], which is the case here since sn < 0, 1  n  C. Second, sn is an increasing

(non-decrasing) and strictly concave function of P̃ d
n since

@2sn

@(P̃ d
n)

2

= �2(P̃ d
n)

�3

is always negative and sn increases as P̃ d
n increases. Contingent upon Lemma A.3 and Remark

1, sn is a concave function of P̃ d
n . Third, ↵ is obviously a linear function of P̃ d

n . Combining these

three steps proves the log concavity of the Poisson-Binomial pmf with respect to P̃ d
n . Finally,

log-concavity of Poisson-Binomial cdf and sf again follows from the integration property of

log-concave functions.

Lemma A.6: [(a)]

1. Poisson-Binomial cdf / sf is an increasing / decreasing function of P̃ d
n and P̃ f

n .

2. Binomial cdf / sf is an increasing / decreasing function of P̃ d
n and P̃ f

n .

Proof. [(a)]

In above polynomial, coe�cient AC�k is the sum of products of k roots such that

AC�k = (�1)k
X

1j1,j2,...,j
k

C

sj1sj2 . . . sj
k

where negative sign of roots are eliminated for both odd and even numbers of k, thus,

coe�cients are decreasing functions of P̃ d
n , so are pmf s. Based on this, cdf is a decreasing

function of P̃ d
n , thus, tail cdf is an increasing function of P̃ d

n .

1.2. This part is a special case of (a) such that P̃ d
n = P̃ d.

Consequently, based on Lemmas A.2 and A.3, constraints �Pd(·) ��0.5 and Pf(·) � 0.5

are convex. Furthermore, by use of Lemmas A.2-A.5 and Remark 1, log(Qf
m(P̃ f

m,n(·))) and

log(Qd
m(P̃ d

m,n(·))) are concave functions, so does the constraint � log(Qd
m(P̃d))  � log(Q̄d

m).

Moreover, objective function of P 3.1-LLP, | log(Q̄f
m)�log(Qf

m(P̃f ))|, is also a convex function

since � log(Qf
m(P̃f )) is convex.
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APPENDIX B. CHAPTER 4 PROOFS

B.1 Convexity Analysis of CSSS

Throughout the appendices, we omit cluster and SU indices, m and n, for the sake of

notational convenience without loss of generality. We simply consider the scalar case of the

composition rule given in Remark A.1 with K = 2, L = 1, b : Q(g) / b : Q(h), and c : g /

c : h. Q(·) is a non-increasing convex / concave function in the case of Q(·)  0.5 / Q(·) � 0.5,

respectively. This can be easily satisfied by constraining the detection threshold as

1  "  � + 1, 8m; 8n (B.1)

which follows from the fact that S is non-negative. To meet the composition requirements of

P f = Q(g) / P d = Q(h) as in Remark A.1, g / h is still required to be jointly concave / convex

in (S, "). Unfortunately, this is not the case since the Hessian matrix of g in (B.2) and that of

h in (B.3) are neither positive nor negative semi-definite as follows

52g(S, ") =

2

6

6

4

(1�")
4S3/2

1

2

p
S

1

2

p
S

0

3

7

7

5

(B.2)

52h(S, ", �) =

2

6

6

4

(�+1�")
4S3/2

p
2�+1

1

2

p
S(2�+1)

1

2

p
S(2�+1)

0

3

7

7

5

(B.3)

Therefore, local probabilities P f (g) and P d(h) are neither convex nor a concave function of

(S, "). As a consequence, this result directly a↵ects the convexity / concavity ofQf
m(P̃ f (⌧, "))/Qd

m(P̃ d(⌧, ", ⇢)),

and CSSS(ȳ,X̄).

For a fixed (parameterized) feasible number of samples S̄, however, g and h are both linear

functions of " due to the zero terms in (B.2) and (B.3). On the other hand, g / h is a concave
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/ convex function of S for a parameterized feasible detection threshold "̄ since (1�")
4S3/2  0 /

(�+1�")
4S3/2

p
2�+1

� 0 if (B.1) is satisfied. Therefore, P f (g) is a convex function of " / S for a

parameterized S / ". Similarly, P d(h) is a concave function of " / S for a parameterized S /

". This parameterized convexity can be further applied to the received local probabilities P̃ f /

P̃ d since (3.11) / (3.10) is nothing but the non-negative weighted sum of P f / P d.

B.2 Monotonicity and Convexity Analysis of ⌘

We first note that the nominator of the objective function, E, is a linear function of number

of samples since Tsns is the summation of S’s while Tsw and Tr are both constant with respect

to S. As a consequence, E increases as the S increases. Since the piece-wise maximization of

convex functions is convex, T is a constant, and Ts is negated in T�T
s

T , R is a concave function.1

For an increase in S, R either decreases, if the SU n is the slowest SU which determines the

Ts, or stay unchanged. Therefore, ⌘ monotonically increases as S increases.

For the quasi-convexity of ⌘, we simply consider a cooperation scheme comprising of SU
1

and SU
2

with real sensing durations 0 < a  T and 0 < b  T , respectively, which can be

easily generalized to other cases. For given (ȳ,X̄), the objective function can be simplified as

⌘(a, b) =
a+ b

T �max(a, b)
(B.4)

where we omit the reporting and switching costs in the nominator and the sum rate in the

denominator since they are constant with respect to a and b. To obtain the Hessian matrix

elements of ⌘(a, b), we first define the derivatives of max(a, b) as follows

@

@a
max(a, b) =

8

>

>

>

<

>

>

>

:

1, a > b

0, otherwise

(B.5)

@

@b
max(a, b) =

8

>

>

>

<

>

>

>

:

1, a < b

0, otherwise

(B.6)

1
We assume that the Qf

m

is constant since it is Qf

th

at the optimal point as explained in Corollary 4.1.
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Figure B.1: ⌘ with respect to sensing durations a and b along with the contour plot under the
three-dimensional shaded surface which shows the polyhedron shaped convex sub-level sets

for ↵ = 5, 10, 15, 20.

The elements of the hessian matrix are then given as

@2⌘(a, b)

@a2
=

8

>

>

>

<

>

>

>

:

2

(T�max(a,b))2

⇣

a+b
T�max(a,b) + 1

⌘

, if a > b

0 , otherwise

@2⌘(a, b)

@b2
=

8

>

>

>

<

>

>

>

:

2

(T�max(a,b))2

⇣

a+b
T�max(a,b) + 1

⌘

, if a < b

0 , otherwise

@2⌘(a, b)

@a@b
=

2 (a+ b) @max(a,b)
@a

@max(a,b)
@b

(T �max(a, b))3

+
@max(a,b)

@a

(T �max(a, b))2
+

@max(a,b)
@b

(T �max(a, b))2
=

1

(T �max(a, b))2

all of which is non-negative due to (B.5), (B.6), 0 < a  T and 0 < b  T . Since @2⌘(a,b)
@a2

@2⌘(a,b)
@b2

is always zero in either cases of a > b and a < b, ⌘ has a non-definite hessian matrix with respect

to a and b. However, it is a quasi-convex function since its sub-level sets S↵ {a, b 2 R+|⌘ (a, b)  ↵}

for ↵ 2 R is a convex set as can be seen in Figure B.1.
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